test_tril_triu_op.py 5.0 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle.tensor as tensor


class TrilTriuOpDefaultTest(OpTest):
    """ the base class of other op testcases
    """

    def setUp(self):
        self.initTestCase()
        self.real_np_op = getattr(np, self.real_op_type)

        self.op_type = "tril_triu"
        self.inputs = {'X': self.X}
        self.attrs = {
            'diagonal': self.diagonal,
            'lower': True if self.real_op_type == 'tril' else False,
        }
        self.outputs = {
            'Out': self.real_np_op(self.X, self.diagonal)
            if self.diagonal else self.real_np_op(self.X)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')

    def initTestCase(self):
        self.real_op_type = np.random.choice(['triu', 'tril'])
        self.diagonal = None
        self.X = np.arange(1, 101, dtype="float64").reshape([10, -1])


def case_generator(op_type, Xshape, diagonal, expected):
    """
    Generate testcases with the params shape of X, diagonal and op_type.
    If arg`expercted` is 'success', it will register an Optest case and expect to pass.
    Otherwise, it will register an API case and check the expect failure.
    """
    cls_name = "{0}_{1}_shape_{2}_diag_{3}".format(expected, op_type, Xshape,
                                                   diagonal)
    errmsg = {
        "diagonal: TypeError":
        "diagonal in {} must be a python Int".format(op_type),
        "input: ValueError":
        "input shape in {} must be at least 2-D".format(op_type),
    }

    class FailureCase(unittest.TestCase):
        def test_failure(self):
            data = fluid.data(shape=Xshape, dtype='float64', name=cls_name)
            with self.assertRaisesRegexp(
                    eval(expected.split(':')[-1]), errmsg[expected]):
                getattr(tensor, op_type)(input=data, diagonal=diagonal)

    class SuccessCase(TrilTriuOpDefaultTest):
        def initTestCase(self):
            self.real_op_type = op_type
            self.diagonal = diagonal
            self.X = np.random.random(Xshape).astype("float64")

    CLASS = locals()['SuccessCase' if expected == "success" else 'FailureCase']
    CLASS.__name__ = cls_name
    globals()[cls_name] = CLASS


### NOTE: meaningful diagonal is [1 - min(H, W), max(H, W) -1]
### test the diagonal just at the border, upper/lower the border, 
###     negative/positive integer within range and a zero
cases = {
    'success': {
        (2, 2, 3, 4, 5): [-100, -3, -1, 0, 2, 4, 100],  # normal shape
        (10, 10, 1, 1): [-100, -1, 0, 1, 100],  # small size of matrix
    },
    'diagonal: TypeError': {
        (20, 20): [
            '2020',
            [20],
            {
                20: 20
            },
            (20, 20),
            20.20,
        ],  # str, list, dict, tuple, float
    },
    'input: ValueError': {
        (2020, ): [None],
    },
}
for _op_type in ['tril', 'triu']:
    for _expected, _params in cases.items():
        for _Xshape, _diaglist in _params.items():
            list(
                map(lambda _diagonal: case_generator(_op_type, _Xshape, _diagonal, _expected),
                    _diaglist))


class TestTrilTriuOpAPI(unittest.TestCase):
    """ test case by using API and has -1 dimension 
    """

    def test_api(self):
        data = np.random.random([1, 9, 9, 4]).astype('float32')
        x = fluid.data(shape=[1, 9, -1, 4], dtype='float32', name='x')
        tril_out, triu_out = tensor.tril(x), tensor.triu(x)

        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        tril_out, triu_out = exe.run(
            fluid.default_main_program(),
            feed={"x": data},
            fetch_list=[tril_out, triu_out], )
        self.assertTrue(np.allclose(tril_out, np.tril(data)))
        self.assertTrue(np.allclose(triu_out, np.triu(data)))

137 138 139 140 141 142 143 144
    def test_api_with_dygraph(self):
        with fluid.dygraph.guard():
            data = np.random.random([1, 9, 9, 4]).astype('float32')
            x = fluid.dygraph.to_variable(data)
            tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu(x).numpy()
            self.assertTrue(np.allclose(tril_out, np.tril(data)))
            self.assertTrue(np.allclose(triu_out, np.triu(data)))

W
WuHaobo 已提交
145 146 147

if __name__ == '__main__':
    unittest.main()