test_sequence_reshape.py 2.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
import math
from op_test import OpTest


class TestSequenceReshape(OpTest):
    def setUp(self):
        self.op_type = 'sequence_reshape'
        dimension = 12
        x_lod = [[0, 4, 5, 8, 11]]
        x = np.random.uniform(0.1, 1, [11, 24]).astype('float32')

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'new_dim': dimension}

        out, out_lod = self.compute_output(x, x_lod, dimension)

        self.outputs = {'Out': (out, out_lod)}

    def compute_output(self, x, x_lod, dimension):
        x_width = x.shape[1]
        out_lod = [[0]]
        for i in xrange(len(x_lod[0]) - 1):
            seq_len = x_lod[0][i + 1] - x_lod[0][i]
            offset = (seq_len * x_width) / dimension
            assert int(offset) * dimension == seq_len * x_width
            out_lod[0].append(out_lod[0][-1] + int(offset))
        out = np.zeros(shape=(out_lod[0][-1], dimension)).astype('float32')
        for i in xrange(len(x_lod[0]) - 1):
            x_offset = x_lod[0][i] * x_width
            out_offset = out_lod[0][i] * dimension
            out_count = (out_lod[0][i + 1] - out_lod[0][i]) * dimension
            x_count = (x_lod[0][i + 1] - x_lod[0][i]) * x_width
            count = min(out_count, x_count)
            out.ravel()[out_offset:out_offset + count] = x.ravel()[
                x_offset:x_offset + count]
        return out, out_lod

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestSequenceReshape_reduce(TestSequenceReshape):
    def setUp(self):
        self.op_type = 'sequence_reshape'
        dimension = 24
        x_lod = [[0, 4, 6, 8, 12]]
        x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'new_dim': dimension}

        out, out_lod = self.compute_output(x, x_lod, dimension)

        self.outputs = {'Out': (out, out_lod)}


if __name__ == '__main__':
    unittest.main()