elementwise_add_op.cu 9.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/fluid/framework/pten_utils.h"
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
18 19
#include "paddle/fluid/operators/reduce_ops/reduce_functor_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
20
#include "paddle/fluid/platform/complex.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
22

23 24 25 26 27
// only can include the headers in paddle/top/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"

G
gongweibao 已提交
28
namespace ops = paddle::operators;
K
Kexin Zhao 已提交
29
namespace plat = paddle::platform;
G
gongweibao 已提交
30

31 32 33 34
namespace paddle {
namespace operators {

template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
static __global__ void SimpleElemwiseAddGradCUDAKernel(
    const T* __restrict__ dout, int size, int vec_size, T* dx, T* dy) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = gridDim.x * blockDim.x;
  int loop = size / vec_size;
  int remainder = size % vec_size;
  const float4* dout_vec = reinterpret_cast<const float4*>(dout);
  float4* dx_vec = reinterpret_cast<float4*>(dx);
  float4* dy_vec = reinterpret_cast<float4*>(dy);
  float4 tmp_loop;

  for (int i = tid; i < loop; i += stride) {
    tmp_loop = dout_vec[i];
    dx_vec[i] = tmp_loop;
    dy_vec[i] = tmp_loop;
  }
51

52 53 54 55 56 57 58 59 60
  if (tid == loop && remainder != 0) {
    T tmp_rem;
    while (remainder) {
      int idx = size - remainder;
      remainder--;
      tmp_rem = dout[idx];
      dx[idx] = tmp_rem;
      dy[idx] = tmp_rem;
    }
61 62 63
  }
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_add_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  auto* dout_data = dout->data<T>();

  // dx
  if (dx != nullptr) {
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    if (dx->dims() == dout->dims()) {
      if (dx_data != dout_data) {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      }
    } else {
      // For inplace strategy, dx will be stored in addr of dout, which makes
      // the result of dy wrong.
      if (dx->IsSharedBufferWith(*dout)) {
        dx->clear();
        dx->mutable_data<T>(x->dims(), ctx.GetPlace());
      }
      std::vector<int> reduce_dims = GetReduceDim(x->dims(), out->dims(), axis);
      gpuStream_t stream = ctx.cuda_device_context().stream();
      TensorReduceFunctorImpl<T, T, CustomSum>(*dout, dx, reduce_dims, stream);
    }
  }
  // dy
  if (dy != nullptr) {
    auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
    if (dy->dims() == dout->dims()) {
      if (dy_data != dout_data) {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      }
    } else {
      std::vector<int> reduce_dims = GetReduceDim(y->dims(), out->dims(), axis);
      gpuStream_t stream = ctx.cuda_device_context().stream();
      TensorReduceFunctorImpl<T, T, CustomSum>(*dout, dy, reduce_dims, stream);
    }
  }
}

114 115 116
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
117 118 119 120 121
elementwise_add_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
  auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
  auto* dout_data = dout->data<T>();
  if (dx_data == dout_data && dy_data != dout_data) {
    VLOG(4) << "Special case when dx_data is the same as dout_data, "
               "only need copy dout to dy";
    framework::TensorCopy(
        *dout, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dy);
  } else if (dx_data != dout_data && dy_data == dout_data) {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "only need copy dout to dx";
    framework::TensorCopy(
        *dout, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dx);
  } else if (dx_data != dout_data && dy_data != dout_data) {
    auto size = x->numel();
    int vec_size = max(static_cast<int>(sizeof(float4) / sizeof(T)), 1);
140
    dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
141
    dim3 grid_size =
142 143
        dim3(((size + vec_size - 1) / vec_size + ELEMENTWISE_BLOCK_SIZE - 1) /
                 ELEMENTWISE_BLOCK_SIZE,
144 145 146 147 148 149 150 151 152 153 154
             1);
    SimpleElemwiseAddGradCUDAKernel<
        T><<<grid_size, block_size, 0,
             ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
        dout->data<T>(), size, vec_size, dx->mutable_data<T>(ctx.GetPlace()),
        dy->mutable_data<T>(ctx.GetPlace()));
  } else {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "and dx_data is the same as dout_data, do not need "
               "any operator";
  }
155 156 157 158
}

}  // namespace operators
}  // namespace paddle
Q
QI JUN 已提交
159
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
160 161 162
    elementwise_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
K
Kexin Zhao 已提交
163
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
164
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
165 166
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
167
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
168
    elementwise_add_grad,
K
Kexin Zhao 已提交
169 170 171
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int>,
C
chengduo 已提交
172
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int64_t>,
173
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, plat::float16>,
174 175 176 177
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
178 179 180 181 182
REGISTER_OP_CUDA_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int>,
183
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
184
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
185
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
186
                                        plat::complex<float>>,
187
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
188
                                        plat::complex<double>>);
189 190 191 192 193 194 195 196 197 198 199
REGISTER_OP_CUDA_KERNEL(
    elementwise_add_triple_grad,
    ops::ElementwiseAddTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseAddTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseAddTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseAddTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseAddTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);
200 201 202 203 204 205

REGISTER_OP_CUDA_KERNEL(
    grad_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
206
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
207 208
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<double>>);