linear_chain_crf_op.cc 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
C
caoying03 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
caoying03 已提交
20
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
21
 public:
Y
Yu Yang 已提交
22
  void Make() override {
C
Cao Ying 已提交
23
    AddInput("Emission",
K
kexinzhao 已提交
24 25
             "(LoDTensor, default LoDTensor<float>) "
             "A 2-D LoDTensor with shape [N x D], where N is the size of the "
C
Cao Ying 已提交
26 27 28
             "mini-batch and D is the total tag number. The unscaled emission "
             "weight matrix for the linear chain CRF. ");
    AddInput("Transition",
K
kexinzhao 已提交
29
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
30 31 32
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
33
             "(LoDTensor, default LoDTensor<int64_t>) A LoDTensor with shape "
C
Cao Ying 已提交
34 35
             "[N x 1], where N is the total element number in a mini-batch. "
             "The ground truth.");
C
caoying03 已提交
36 37
    AddOutput(
        "Alpha",
K
kexinzhao 已提交
38
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
39 40 41
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
42
        "probabilites of all possible unfinished sequences of tags that end at "
43 44 45
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
46 47
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
48 49
    AddOutput(
        "EmissionExps",
K
kexinzhao 已提交
50
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
C
Cao Ying 已提交
51 52 53
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
        "backward computation.")
C
caoying03 已提交
54
        .AsIntermediate();
C
Cao Ying 已提交
55 56
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
57
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
58 59 60
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
        "will be reused in backward computation.")
C
caoying03 已提交
61
        .AsIntermediate();
C
caoying03 已提交
62 63
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
64
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
65 66
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
67 68
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
69 70 71
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
72 73 74
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
75 76 77

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
78 79 80
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
81

C
caoying03 已提交
82
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
83 84
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
85 86

Equation:
Y
yi.wu 已提交
87

88
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
89
2. The first D values of Input(Transition) to this operator are for starting
90
weights, denoted as $a$ here.
K
kexinzhao 已提交
91
3. The next D values of Input(Transition) of this operator are for ending
92
weights, denoted as $b$ here.
K
kexinzhao 已提交
93
4. The remaning values of Input(Transition) are for transition weights,
94 95
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
96

97 98 99 100 101 102 103
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
104 105
to the linear chain CRF.

K
kexinzhao 已提交
106
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
107 108 109
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
110

C
caoying03 已提交
111 112 113 114
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
115
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
116 117 118 119
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

120
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
121 122 123 124 125

)DOC");
  }
};

C
caoying03 已提交
126
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
127 128 129
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
130 131 132 133 134 135 136 137 138
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
139 140 141 142
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
143 144 145 146 147
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
    PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
148
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
149 150 151
    PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");

    auto transition_dims = ctx->GetInputDim("Transition");
C
caoying03 已提交
152
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
153
                      "The Input(Transition) should be a 2-D tensor.");
C
caoying03 已提交
154
    PADDLE_ENFORCE_EQ(
155 156
        transition_dims[0] - 2, transition_dims[1],
        "An invalid dimension for the Input(Transition), which should "
C
caoying03 已提交
157
        "be a 2-D tensor with shape [(D + 2) x D].");
C
caoying03 已提交
158 159
    PADDLE_ENFORCE_EQ(
        emission_dims[1], transition_dims[1],
160
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
161
        "should be equal to the tag number.");
C
caoying03 已提交
162 163

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
164
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
165 166 167 168 169 170
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_dims[0], label_dims[0],
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
171 172

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
173 174
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
175
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
176
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
177 178
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
179 180 181
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
182
 protected:
C
Cao Ying 已提交
183 184
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
185
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
186
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
187 188
    return framework::OpKernelType(ctx.Input<LoDTensor>("Emission")->type(),
                                   platform::CPUPlace());
C
caoying03 已提交
189
  }
C
caoying03 已提交
190 191
};

C
caoying03 已提交
192
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
193 194 195
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
196 197 198 199 200 201 202 203 204 205 206
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2UL,
                      "The Input(EmissionExps) should be a 2-D tensor.");
C
caoying03 已提交
207 208 209
    PADDLE_ENFORCE(emission_exps_dims[0],
                   "An empty mini-batch is not allowed.");

210
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
C
caoying03 已提交
211 212 213 214 215 216 217 218 219 220
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL,
                      "The Input(TransitionExps) should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(
        transition_exps_dims[0] - 2, transition_exps_dims[1],
        "An invalid dimension for the Input(TransitionExps), which should "
        "be a 2-D tensor with shape [(D + 2) x D].");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[1], transition_exps_dims[1],
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
C
caoying03 已提交
221 222

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
223 224 225 226 227 228 229 230
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[0], label_dims[0],
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
231 232
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
S
sneaxiy 已提交
233
      ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
C
caoying03 已提交
234 235 236 237
    }
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
238
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
239
    }
C
caoying03 已提交
240
  }
C
caoying03 已提交
241 242 243

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
244
  // operator is determined by its input: gradients of LogLikelihood.
245
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
246
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
247
    return framework::OpKernelType(
Y
Yu Yang 已提交
248
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type(),
249
        platform::CPUPlace());
C
caoying03 已提交
250
  }
C
caoying03 已提交
251 252 253 254 255 256
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
257 258
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
                  ops::LinearChainCRFOpMaker,
259 260
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp);
261 262
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
263 264
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
265 266
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
267 268 269
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);