anakin_subgraph_pass.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
16
#include <map>
17 18 19 20 21 22 23 24
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
25
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "paddle/fluid/inference/anakin/op_teller.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace inference {
namespace analysis {

using framework::ir::Node;

std::unique_ptr<framework::ir::Graph> analysis::AnakinSubgraphPass::ApplyImpl(
    std::unique_ptr<framework::ir::Graph> graph) const {
  framework::ir::FusePassBase::Init("anakin_subgraph_pass", graph.get());

  auto teller = [](const framework::ir::Node *node) {
    if (!node->IsOp() || !node->Op()) return false;
    return anakin::OpTeller::Global().Tell(node->Op()->Type(), *node->Op());
  };

47
  SubGraphFuser fuser(graph.get(), teller, 6 /* min_subgraph_size */);
48 49
  fuser();

50
  std::vector<std::string> graph_param_names =
N
nhzlx 已提交
51
      ExtractParameters(graph->Nodes());
52 53

  // those parameter already exist in anakin, and should not have another copy
N
nhzlx 已提交
54
  // in fluid.
55 56
  std::vector<std::string> repetitive_params;

57 58
  for (auto *node : graph->Nodes()) {
    if (node->IsOp() && !Agent(node).subgraph()->empty()) {
59
      CreateAnakinOp(node, graph.get(), graph_param_names, &repetitive_params);
60 61 62 63 64 65 66 67 68 69 70 71 72
      std::unordered_set<const Node *> nodes2remove(
          Agent(node).subgraph()->begin(), Agent(node).subgraph()->end());
      framework::ir::GraphSafeRemoveNodes(graph.get(), nodes2remove);
    }
  }

  std::unordered_set<const Node *> nodes2remove;
  for (auto *node : graph->Nodes()) {
    if (node->IsOp() && Agent(node).deleted()) {
      nodes2remove.insert(node);
    }
  }
  framework::ir::GraphSafeRemoveNodes(graph.get(), nodes2remove);
73 74
  graph->Set(framework::ir::kRepetitiveParamAttr,
             new std::vector<std::string>(repetitive_params));
75 76 77 78

  return graph;
}

79 80 81
std::string GenerateAnakinEngineKey(const std::set<std::string> &engine_inputs,
                                    const std::set<std::string> &engine_outputs,
                                    std::string id) {
82 83 84 85 86 87 88
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
89
  engine_hash_key += id;
90 91 92 93
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

94 95 96 97
void AnakinSubgraphPass::CreateAnakinOp(
    framework::ir::Node *node, Graph *graph,
    const std::vector<std::string> &graph_params,
    std::vector<std::string> *repetitive_params) const {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  auto *op_desc = node->Op();
  auto &subgraph = *Agent(node).subgraph();
  PADDLE_ENFORCE(!subgraph.empty());

  framework::ProgramDesc *program_desc =
      Get<framework::ProgramDesc *>("program");
  // Add new block for TensorRTEngineOP
  const framework::BlockDesc &main_block =
      program_desc->Block(framework::kRootBlockIndex);
  // const framework::BlockDesc& main_block = program_desc->Block(0);
  framework::BlockDesc *new_block = program_desc->AppendBlock(main_block);

  // An fake block desc.
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);
  string::PrettyLogDetail("---  detect a sub-graph with %d nodes",
                          subgraph.size());

  for (auto *node : subgraph) {
    auto *new_block_op = new_block->AppendOp();
    auto *op = block_desc.AppendOp();
    *new_block_op->Proto() = *node->Op()->Proto();
    *op->Proto() = *node->Op()->Proto();
  }

  // Then, we will use the input_names_with_id and output_names_with_id to
  // generate the eigine key.
  // So, We use set instead of unordered_set here to ensure that the engine key
  // is unique.
  std::set<std::string> input_names;
  std::set<std::string> input_names_with_id;
131
  std::vector<std::string> params;
132 133 134
  for (auto *x : node->inputs) {
    input_names.insert(x->Name());
    input_names_with_id.insert(x->Name() + std::to_string(x->id()));
135 136 137
    if (std::count(graph_params.begin(), graph_params.end(), x->Name()) > 0) {
      params.push_back(x->Name());
    }
138
  }
139 140
  std::copy(params.begin(), params.end(),
            std::back_inserter(*repetitive_params));
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  op_desc->SetInput(
      "Xs", std::vector<std::string>(input_names.begin(), input_names.end()));

  std::set<std::string> output_names;
  std::set<std::string> output_names_with_id;
  for (auto *x : node->outputs) {
    output_names.insert(x->Name());
    output_names_with_id.insert(x->Name() + std::to_string(x->id()));
  }

  op_desc->SetOutput(
      "Ys", std::vector<std::string>(output_names.begin(), output_names.end()));
  op_desc->SetType("anakin_engine");

  std::unordered_map<std::string, std::string> output_name_map;
156 157 158 159 160 161 162
  std::unordered_map<std::string, framework::ir::Node *> graph_var_map;

  for (framework::ir::Node *node : graph->Nodes()) {
    if (node->IsVar() && node->Var()) {
      graph_var_map[node->Name()] = node;
    }
  }
N
nhzlx 已提交
163
  auto &subgraph_nodes = *Agent(node).subgraph();
164 165 166

  // The following procedure is used to rename all the intermediate
  // variables and the output variables of the subgraph.
N
nhzlx 已提交
167 168
  RenameAndGetOutputs(subgraph_nodes, &block_desc, input_names_with_id,
                      &output_names_with_id, &output_names, &output_name_map,
169
                      graph_var_map, false);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

  // When anakin engine runs at the end of the operation,
  // output_mapping help us copy the data from the renamed ITensor
  // to Tensor.
  std::vector<std::string> output_mapping;
  for (auto name : output_names) {
    PADDLE_ENFORCE(output_name_map.count(name) != 0);
    output_mapping.push_back(output_name_map[name]);
  }

  PADDLE_ENFORCE(!block_desc.Proto()->vars().empty(),
                 "the block has no var-desc");
  PADDLE_ENFORCE(!output_mapping.empty());
  op_desc->SetBlockAttr("sub_block", new_block);
  SetAttr(op_desc->Proto(), "subgraph",
          block_desc.Proto()->SerializeAsString());
  // Set attrs
N
nhzlx 已提交
187
  SetAttr(op_desc->Proto(), "parameters", params);
188
  SetAttr(op_desc->Proto(), "output_name_mapping", output_mapping);
189 190 191
  int predictor_id = Get<int>("predictor_id");
  auto engine_key = GenerateAnakinEngineKey(
      input_names_with_id, output_names_with_id, std::to_string(predictor_id));
192 193

  SetAttr(op_desc->Proto(), "engine_key", engine_key);
194 195 196
  auto max_input_shape =
      Get<std::map<std::string, std::vector<int>>>("max_input_shape");
  auto max_batch_size = Get<int>("max_batch_size");
197 198 199

  auto *anakin_engine =
      inference::Singleton<anakin::AnakinEngineManager>::Global().Create(
200 201
          true, Get<int>("gpu_device_id"), max_batch_size, max_input_shape,
          engine_key);
202 203 204 205 206 207 208

  auto *scope = param_scope();
  std::unordered_set<std::string> param_set(params.begin(), params.end());
  framework::BlockDesc block_desc_temp(nullptr, block_desc.Proto());

  inference::Singleton<inference::anakin::AnakinOpConverter>::Global()
      .ConvertBlockToAnakinEngine(
209
          &block_desc_temp, scope,
210 211
          std::vector<std::string>(input_names.begin(), input_names.end()),
          param_set, output_mapping, anakin_engine);
212 213 214 215 216 217 218 219
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle

REGISTER_PASS(anakin_subgraph_pass,
              paddle::inference::analysis::AnakinSubgraphPass);