distribute_transpiler.py 34.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16
import framework
17
from framework import Program, default_main_program, default_startup_program, Parameter, Variable
T
done  
typhoonzero 已提交
18 19
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
23
import debuger
T
done  
typhoonzero 已提交
24 25


T
typhoonzero 已提交
26 27 28 29 30 31
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
32

T
typhoonzero 已提交
33 34
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


88 89 90 91
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
92 93 94 95 96
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
97
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
98 99
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
100

T
typhoonzero 已提交
101 102
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
103 104
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
105 106
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
125
        # update split_count after aligning
T
typhoonzero 已提交
126 127 128 129 130 131 132 133 134
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
135 136 137 138
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
139
                  trainer_id,
T
done  
typhoonzero 已提交
140 141 142 143 144
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
145 146
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
147
            to do parameter optimization. And the optimization graph will be put
148
            into a parameter server program.
T
done  
typhoonzero 已提交
149

150
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
151 152
            parameter servers.

T
typhoonzero 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
done  
typhoonzero 已提交
168
            :param optimize_ops: op list of optimization, should be the
169
                                    return value of Optimizer.minimize
T
done  
typhoonzero 已提交
170
            :type optimize_ops: list
T
typhoonzero 已提交
171 172 173 174
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
175
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
176
            :type program: Program
T
done  
typhoonzero 已提交
177 178
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
179 180 181 182 183
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
184
        """
T
typhoonzero 已提交
185
        assert (callable(split_method))
T
done  
typhoonzero 已提交
186 187
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
188
        self.program = program
T
done  
typhoonzero 已提交
189
        self.trainers = trainers
T
typhoonzero 已提交
190
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
191 192 193 194
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
195
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
196

197 198
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
199 200 201 202
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
203 204
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
205
        grad_var_mapping = self._append_split_op(program, grad_blocks)
206 207 208 209
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
210
        send_inputs = []
T
typhoonzero 已提交
211
        send_outputs = []
T
typhoonzero 已提交
212 213 214 215 216 217
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
218 219
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
220
        eplist = split_method(send_inputs, pserver_endpoints)
221
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
222 223 224 225 226 227 228 229
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
230

T
typhoonzero 已提交
231 232
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
T
typhoonzero 已提交
233
            persistable=True,
T
typhoonzero 已提交
234
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
235

236
        # create send_op
T
typhoonzero 已提交
237
        program.global_block().append_op(
T
typhoonzero 已提交
238 239
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
240 241
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
242
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
243
                   "epmap": eplist})
244
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
245
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
246 247
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
248
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
249
            program.global_block().append_op(
T
typhoonzero 已提交
250
                type="concat",
T
typhoonzero 已提交
251
                inputs={"X": splited_var},
T
typhoonzero 已提交
252
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
253
                attrs={"axis": 0})
T
typhoonzero 已提交
254

T
typhoonzero 已提交
255 256 257
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
        self.program.global_block().delete_ops(self.optimize_ops)
258 259
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
        self.program.__str__()
T
typhoonzero 已提交
260 261 262 263 264
        return self.program

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
265
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
266 267 268 269 270 271
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
272
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
273 274 275 276 277 278 279 280 281 282 283
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
T
typhoonzero 已提交
284 285
            else:
                orig_var_name = v.name
286 287
            #TODO(panyx0718): Should this be put in the else block below? It's
            # only used there and it's called single_trainer_var.
T
typhoonzero 已提交
288
            single_trainer_var = pserver_program.global_block().create_var(
T
typhoonzero 已提交
289 290
                name=orig_var_name,
                persistable=True,
291
                type=v.type,
T
typhoonzero 已提交
292 293
                dtype=v.dtype,
                shape=v.shape)
T
typhoonzero 已提交
294 295 296 297 298 299 300 301 302 303 304
            if self.trainers > 1:
                for trainer_id in xrange(self.trainers):
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
305

T
typhoonzero 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        # step3
        optimize_block = pserver_program.create_block(0)
        # step 4
        # Create a union-find data struct from optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 4.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 4.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
T
typhoonzero 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
            if op.type == "scale":
                for in_name in op.input_arg_names:
                    if in_name.startswith("beta1_pow_acc") or\
                        in_name.startswith("beta2_pow_acc"):
                        global_ops.append(op)

        def __append_optimize_op__(op, block):
            if self._is_opt_op(op):
                self._append_pserver_ops(block, op, endpoint,
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

353
        append_block = optimize_block
354
        # append lr decay ops to the child block if exists
355 356 357 358 359 360 361
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
            for _, op in enumerate(lr_ops):
                self._append_pserver_non_opt_ops(append_block, op)

            append_block = pserver_program.create_block(append_block.idx)

T
typhoonzero 已提交
362
        # append op to the current block
363
        per_opt_block = append_block
T
typhoonzero 已提交
364 365 366 367 368 369
        for _, opt_op in enumerate(opt_op_on_pserver):
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
                if ufind.is_connected(op, opt_op) and \
                    op not in global_ops:
                    __append_optimize_op__(op, per_opt_block)
370
            per_opt_block = pserver_program.create_block(append_block.idx)
T
typhoonzero 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383

        # append global ops
        for glb_op in global_ops:
            __append_optimize_op__(glb_op, per_opt_block)

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

T
typhoonzero 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
                "OptimizeBlock": optimize_block,
                "endpoint": endpoint,
                "Fanin": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
418
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
457
        Create vars for each split.
T
typhoonzero 已提交
458 459
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
460
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
461
        """
T
typhoonzero 已提交
462
        block_map = dict()
T
typhoonzero 已提交
463
        var_mapping = dict()
T
typhoonzero 已提交
464 465 466 467 468 469
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
470
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
471
            if len(splited) == 1:
T
typhoonzero 已提交
472 473 474 475 476 477 478 479 480
                if add_trainer_suffix:
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
481
                continue
T
typhoonzero 已提交
482 483

            var_mapping[varname] = []
T
typhoonzero 已提交
484 485 486 487
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
488

T
typhoonzero 已提交
489
            for i, block in enumerate(splited):
T
typhoonzero 已提交
490
                size = block[1]
T
typhoonzero 已提交
491 492 493 494
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
495 496 497 498 499 500 501
                new_var_name = ""
                if add_trainer_suffix:
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
502
                var = program.global_block().create_var(
T
typhoonzero 已提交
503 504
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
505
                    dtype=orig_var.dtype,
506
                    type=orig_var.type,
T
typhoonzero 已提交
507
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
508
                var_mapping[varname].append(var)
T
typhoonzero 已提交
509
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
510
        return var_mapping
T
done  
typhoonzero 已提交
511 512 513 514 515 516 517 518 519

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
520
            persistable=True)
T
done  
typhoonzero 已提交
521

T
typhoonzero 已提交
522
    def _append_split_op(self, program, gradblocks):
523
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
524 525 526
        add_suffix = False
        if self.trainers > 1:
            add_suffix = True
T
typhoonzero 已提交
527
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
528
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
529
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
530 531
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
532
                continue
T
typhoonzero 已提交
533
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
534
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
535 536 537 538 539 540 541 542
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
543
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
544 545 546 547 548 549 550 551 552 553 554 555
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
556
        return var_mapping
T
done  
typhoonzero 已提交
557

T
typhoonzero 已提交
558 559 560 561
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
562
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
585 586 587 588 589
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
590 591
        else:
            orig_var_name = varname
T
typhoonzero 已提交
592 593
        return orig_var_name

594 595
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
                            origin_program):
596
        program = optimize_block.program
T
typhoonzero 已提交
597
        pserver_block = program.global_block()
T
typhoonzero 已提交
598
        new_inputs = dict()
T
typhoonzero 已提交
599 600
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
601
        for key in opt_op.input_names:
T
typhoonzero 已提交
602 603 604
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
605
                    if same_or_split_var(
T
typhoonzero 已提交
606 607
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
608 609 610 611 612 613
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
614 615
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
T
typhoonzero 已提交
616
                if self.trainers > 1:
T
typhoonzero 已提交
617 618 619 620 621 622
                    vars2merge = []
                    for i in xrange(self.trainers):
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

623
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
624 625 626
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
627
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
628 629 630 631 632 633
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
                            attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
634 635 636 637 638
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
639
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
640 641 642 643
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
644
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
645
                    name=param_block.name,
T
typhoonzero 已提交
646
                    persistable=True,
T
typhoonzero 已提交
647 648 649
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
650
            elif key == "LearningRate":
651
                # learning rate variable has already be created by non-optimize op,
652
                # don't create it once again.
653 654 655 656 657 658 659 660 661 662 663
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
664

T
typhoonzero 已提交
665
        for key in opt_op.input_names:
666 667
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
668
                continue
T
typhoonzero 已提交
669
            var = self.program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
670 671 672 673
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
674
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
675 676 677 678 679
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
680

681
        # change output's ParamOut variable
T
typhoonzero 已提交
682 683
        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)
684
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
685

686
        optimize_block.append_op(
T
typhoonzero 已提交
687 688
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
689
            outputs=outputs,
T
typhoonzero 已提交
690 691
            attrs=opt_op.attrs)

692 693
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
694
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
695 696
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
697 698 699 700
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
701
            for var in varlist:
702 703
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
704 705 706 707 708 709 710 711
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

712 713 714 715 716
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
717
                program.global_block().clone_variable(var)
718

719
        optimize_block.append_op(
T
typhoonzero 已提交
720
            type=opt_op.type,
T
typhoonzero 已提交
721 722
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
723 724
            attrs=opt_op.attrs)

725 726 727 728
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
742 743
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
744
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
745
        op2_output_names = op2.desc.output_arg_names()
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
T
typhoonzero 已提交
766 767
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
768 769 770 771 772 773 774
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
775
        if op.input("Param")[0] in param_names:
776 777 778
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
779
                param = op.input("Param")[0]
T
typhoonzero 已提交
780
                if same_or_split_var(n, param) and n != param:
781 782 783 784
                    return True
            return False
        return False

T
typhoonzero 已提交
785
    def _get_input_map_from_op(self, varmap, op):
786
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
787 788 789 790 791 792 793 794 795 796 797 798
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
799
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
800 801 802 803 804 805 806 807 808 809
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
        block = self.program.global_block()
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
827 828 829

        # TODO(panyx0718): If lr_ops connects with other training
        # ops, could they be considered as lr_ops?
830 831 832 833 834 835 836 837 838 839 840 841 842
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
        return lr_ops