paddle_analysis_config.h 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct LiteNNAdapterConfig {
  bool use_nnadapter{false};
  std::string nnadapter_model_cache_dir;
  std::map<std::string, std::vector<char>> nnadapter_model_cache_buffers;
  std::vector<std::string> nnadapter_device_names;
  std::string nnadapter_context_properties;
  std::string nnadapter_subgraph_partition_config_path;
  std::string nnadapter_subgraph_partition_config_buffer;

  LiteNNAdapterConfig& SetDeviceNames(const std::vector<std::string>& names);

  LiteNNAdapterConfig& SetContextProperties(const std::string& properties);

  LiteNNAdapterConfig& SetModelCacheDir(const std::string& dir);

  LiteNNAdapterConfig& SetModelCacheBuffers(
      const std::string& model_cache_token,
      const std::vector<char>& model_cache_buffer);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigPath(const std::string& path);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigBuffer(
      const std::string& buffer);

  LiteNNAdapterConfig& Enable();
  LiteNNAdapterConfig& Disable();
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
struct DistConfig {
  bool use_dist_model() const { return use_dist_model_; }
  void EnableDistModel(bool use_dist_model) {
    use_dist_model_ = use_dist_model;
  }

  std::vector<std::string> trainer_endpoints() const {
    return trainer_endpoints_;
  }

  std::string current_endpoint() const { return current_endpoint_; }

  void SetEndpoints(const std::vector<std::string>& trainer_endpoints,
                    const std::string& current_endpoint) {
    trainer_endpoints_ = trainer_endpoints;
    current_endpoint_ = current_endpoint;
  }

  int64_t nranks() const { return nranks_; }

  int64_t rank() const { return rank_; }

  void SetRanks(int64_t nranks, int64_t rank) {
    nranks_ = nranks;
    rank_ = rank;
  }

  std::string comm_init_config() const { return comm_init_config_; }

  void SetCommInitConfig(const std::string& comm_init_config) {
    comm_init_config_ = comm_init_config;
  }

  void SetCarrierId(const std::string& carrier_id) { carrier_id_ = carrier_id; }

  std::string carrier_id() const { return carrier_id_; }

 protected:
  // DistModel Inference related
  bool use_dist_model_{false};  // whether use DistModel or not
  std::vector<std::string> trainer_endpoints_{};  // all trainers' endpoints
  std::string current_endpoint_{};                // current trainer's endpoint
  int64_t nranks_{1};               // total ranks (number of trainers)
  int64_t rank_{0};                 // rank
  std::string comm_init_config_{};  // converter config path
  std::string carrier_id_{"inference"};
};

127
///
128
/// \brief configuration manager for AnalysisPredictor.
129 130
/// \since 1.7.0
///
131
/// AnalysisConfig manages configurations of AnalysisPredictor.
132 133 134 135 136
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
137 138
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
139
///
140
struct PD_INFER_DECL AnalysisConfig {
141
  AnalysisConfig() = default;
142
  ///
143 144
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
145
  ///
146
  /// \param[in] other another AnalysisConfig
147
  ///
148
  explicit AnalysisConfig(const AnalysisConfig& other);
149
  ///
150
  /// \brief Construct a new AnalysisConfig from a no-combined model.
151 152 153
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
154
  explicit AnalysisConfig(const std::string& model_dir);
155
  ///
156
  /// \brief Construct a new AnalysisConfig from a combined model.
157 158 159 160
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
161 162
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
163 164 165
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
166
  enum class Precision {
167 168 169
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
170
  };
171

172 173 174 175 176
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
177
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
178 179 180 181 182 183 184 185

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
186 187
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
188 189 190 191 192
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
193
  void SetProgFile(const std::string& x) { prog_file_ = x; }
194 195 196 197 198
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
199
  void SetParamsFile(const std::string& x) { params_file_ = x; }
200 201 202 203 204 205

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
206 207 208
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
209 210 211 212 213
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
214
  const std::string& model_dir() const { return model_dir_; }
215 216 217 218 219
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
220
  const std::string& prog_file() const { return prog_file_; }
221 222 223 224 225
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
226 227
  const std::string& params_file() const { return params_file_; }

228
  // Padding related.
229 230 231 232 233

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
234
  void DisableFCPadding();
235 236 237 238 239
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
240 241
  bool use_fc_padding() const { return use_fc_padding_; }

242
  // GPU related.
243

244 245 246 247 248 249
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
250
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
251 252 253 254
  ///
  /// \brief Turn off GPU.
  ///
  ///
255
  void DisableGpu();
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
277 278 279 280
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
J
jianghaicheng 已提交
281 282 283 284

  ///
  /// \brief Turn on IPU.
  ///
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  /// \param ipu_device_num the number of IPUs.
  /// \param ipu_micro_batch_size the batch size in the graph, only work with
  /// mutable input shapes.
  /// \param ipu_enable_pipelining enable pipelining.
  /// \param ipu_batches_per_step the number of batches per run in pipelining.
  ///
  void EnableIpu(int ipu_device_num = 1, int ipu_micro_batch_size = 1,
                 bool ipu_enable_pipelining = false,
                 int ipu_batches_per_step = 1);

  ///
  /// \brief Set IPU config.
  ///
  /// \param ipu_enable_fp16 enable fp16.
  /// \param ipu_replica_num the number of graph replication.
  /// \param ipu_available_memory_proportion the available memory proportion for
  /// matmul/conv.
  /// \param ipu_enable_half_partial enable fp16 partial for matmul, only work
  /// with fp16.
  ///
  void SetIpuConfig(bool ipu_enable_fp16 = false, int ipu_replica_num = 1,
                    float ipu_available_memory_proportion = 1.0,
                    bool ipu_enable_half_partial = false);

309
  ///
310 311 312 313 314 315
  /// \brief Set XPU device id.
  ///
  /// \param device_id the XPU card to use (default is 0).
  ///
  void SetXpuDeviceId(int device_id = 0);
  ///
W
Wilber 已提交
316 317 318 319 320 321
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
322 323 324 325
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
326
  bool use_gpu() const { return use_gpu_; }
327
  ///
328 329 330 331 332 333
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
334 335 336 337 338
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
J
jianghaicheng 已提交
339 340 341 342 343
  /// \brief A boolean state telling whether the IPU is turned on.
  ///
  /// \return bool Whether the IPU is turned on.
  ///
  bool use_ipu() const { return use_ipu_; }
W
Wilber 已提交
344
  ///
345 346 347 348 349 350
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
351
  /// \brief Get the XPU device id.
352
  ///
353
  /// \return int The XPU device id.
354
  ///
355
  int xpu_device_id() const { return xpu_device_id_; }
356
  ///
W
Wilber 已提交
357 358 359 360 361
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
J
jianghaicheng 已提交
362 363 364 365 366
  /// \brief Get the the number of IPU device .
  ///
  /// \return int The number of IPU device.
  ///
  int ipu_device_num() const { return ipu_device_num_; }
W
Wilber 已提交
367
  ///
368 369 370 371
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
372
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
373 374 375 376 377 378
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
379
  float fraction_of_gpu_memory_for_pool() const;
380

381 382 383 384 385
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
386
  void EnableCUDNN();
387 388 389 390 391
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
392 393
  bool cudnn_enabled() const { return use_cudnn_; }

394 395 396 397 398 399
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
400
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
401 402 403 404 405 406
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
407
  bool ir_optim() const { return enable_ir_optim_; }
408

409 410 411 412 413 414 415
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
416
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
417 418 419 420 421 422
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
423
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
424

425 426 427 428 429 430 431 432 433 434 435
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
436
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
437 438 439 440 441 442 443
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
444
  bool specify_input_name() const { return specify_input_name_; }
445

446 447 448 449 450 451 452 453 454 455
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
456
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
457 458 459 460 461 462 463 464
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
465 466 467 468 469
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
470 471 472 473 474
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
475
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
476
  ///
477 478 479 480 481 482
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
483 484 485 486 487 488 489
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
490 491 492 493 494
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
495 496 497 498 499 500
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
501
    return !min_input_shape_.empty();
502
  }
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

547 548 549 550 551 552
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

553 554
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
555 556 557
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
558 559
  ///
  void EnableTensorRtOSS();
560

561 562 563 564 565 566 567
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
  bool tensorrt_oss_enabled() { return trt_use_oss_; }

568 569 570 571 572 573 574 575 576 577 578 579 580 581
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

582 583 584
  void EnableTensorRtInspector();
  bool tensorrt_inspector_enabled() { return trt_use_inspector_; }

D
denglin-github 已提交
585 586 587
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

588 589 590 591 592 593 594
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
595 596
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
597
      bool zero_copy = false,
石晓伟 已提交
598 599 600
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

601 602 603 604 605 606
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
607 608
  bool lite_engine_enabled() const { return use_lite_; }

609 610 611 612 613 614 615
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
616
  void SwitchIrDebug(int x = true);
617

618 619 620 621
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
622
  void EnableMKLDNN();
623 624 625
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
626 627
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
628 629 630
  ///
  /// \param capacity The cache capacity.
  ///
631
  void SetMkldnnCacheCapacity(int capacity);
632 633 634 635 636
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
637 638
  bool mkldnn_enabled() const { return use_mkldnn_; }

639 640 641 642 643 644
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
645
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
646 647 648 649 650 651
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
652 653 654 655
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

656 657 658 659 660
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
661
  NativeConfig ToNativeConfig() const;
662 663 664 665 666
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
667 668 669
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
670

671 672 673 674
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
675 676
  void EnableMkldnnQuantizer();

677 678 679 680 681 682 683 684 685 686 687 688 689
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

690 691 692 693 694 695 696 697
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

698 699 700 701 702 703 704 705
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

706 707 708 709 710
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
711 712
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

713 714 715 716 717
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
718
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
719

720 721 722 723 724 725 726 727 728
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
729
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
730
                      const char* params_buffer, size_t params_buffer_size);
731 732 733 734 735 736
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
737
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
738

739 740 741 742
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
743 744 745
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
746 747 748 749 750 751
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
752
  bool enable_memory_optim() const;
753

754 755 756 757
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
758
  void EnableProfile();
759 760 761 762 763
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
764 765
  bool profile_enabled() const { return with_profile_; }

766 767 768
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
769
  void DisableGlogInfo();
770 771 772 773 774
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
775 776
  bool glog_info_disabled() const { return !with_glog_info_; }

777 778 779 780 781
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
782
  void SetInValid() const { is_valid_ = false; }
783 784 785 786 787
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
788
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
789

790 791
  friend class ::paddle::AnalysisPredictor;

792 793 794 795 796
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
797
  PassStrategy* pass_builder() const;
798 799 800 801 802 803 804

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
805
  void PartiallyRelease();
806

807 808 809 810 811
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

812 813
  LiteNNAdapterConfig& NNAdapter() { return nnadapter_config_; }

814 815 816 817 818 819
  void SetDistConfig(const DistConfig& dist_config) {
    dist_config_ = dist_config;
  }

  const DistConfig& dist_config() const { return dist_config_; }

820 821 822 823 824 825
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

826
 protected:
827 828
  // Model pathes.
  std::string model_dir_;
829 830
  mutable std::string prog_file_;
  mutable std::string params_file_;
831

S
Sylwester Fraczek 已提交
832
  // GPU related.
833
  bool use_gpu_{false};
834
  int gpu_device_id_{0};
835
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
836
  bool thread_local_stream_{false};
837

838 839
  bool use_cudnn_{false};

W
Wilber 已提交
840 841 842 843
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

844 845 846
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
847
  // TensorRT related.
848
  bool use_tensorrt_{false};
849 850
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
851
  int tensorrt_workspace_size_{1 << 30};
852 853 854 855
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
856
  int tensorrt_max_batchsize_{1};
857 858 859 860 861
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
862 863 864
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
865
  bool trt_use_oss_{false};
866
  bool trt_with_interleaved_{false};
867 868
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
869 870 871
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
872
  std::vector<std::string> trt_disabled_ops_{};
873
  bool disable_trt_plugin_fp16_{false};
874 875 876
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};
877
  bool trt_use_inspector_{false};
878 879 880 881 882 883

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
884

D
denglin-github 已提交
885 886 887 888
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
889 890 891
  // memory reuse related.
  bool enable_memory_optim_{false};

892 893 894
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
895
  bool model_from_memory_{false};
896

897 898 899 900 901 902 903 904
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

905 906
  bool with_profile_{false};

907 908
  bool with_glog_info_{true};

909 910 911 912
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
913

石晓伟 已提交
914 915 916 917
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
918
  bool lite_zero_copy_;
石晓伟 已提交
919

W
Wilber 已提交
920
  // XPU related.
921
  bool use_xpu_{false};
W
Wilber 已提交
922
  int xpu_device_id_{0};
923
  int xpu_l3_workspace_size_{0};
W
Wilber 已提交
924 925 926 927 928
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
929

930 931 932
  // NNAdapter related
  LiteNNAdapterConfig nnadapter_config_;

933
  // mkldnn related.
W
Wilber 已提交
934
  int mkldnn_cache_capacity_{10};
935 936
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
937
  bool use_mkldnn_bfloat16_{false};
938
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
939

J
jianghaicheng 已提交
940 941 942
  // ipu related.
  bool use_ipu_{false};
  int ipu_device_num_{1};
943
  int ipu_micro_batch_size_{1};
J
jianghaicheng 已提交
944 945
  bool ipu_enable_pipelining_{false};
  int ipu_batches_per_step_{1};
946 947 948 949 950

  bool ipu_enable_fp16_{false};
  int ipu_replica_num_{1};
  float ipu_available_memory_proportion_{1.0};
  bool ipu_enable_half_partial_{false};
J
jianghaicheng 已提交
951

952 953 954 955
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
956 957
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
958
  friend class paddle_infer::experimental::InternalUtils;
959 960 961

  // fleet exe related
  DistConfig dist_config_{};
962 963 964
};

}  // namespace paddle