cast_op.cu 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cast_op.h"
K
Kexin Zhao 已提交
16
#include "paddle/fluid/platform/float16.h"
Z
Zhang Ting 已提交
17 18 19 20 21
#include "paddle/fluid/platform/gpu_launch_config.h"

namespace paddle {
namespace operators {

Z
Zhang Ting 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// aligned vector generates vectorized load/store on CUDA
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T* pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}

template <typename InT, typename OutT, int VecSize>
__global__ void VecCastCUDAKernel(const InT* in, const int64_t N, OutT* out) {
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  using LoadT = AlignedVector<InT, VecSize>;
  using StoreT = AlignedVector<OutT, VecSize>;
  for (int i = idx * VecSize; i < N; i += blockDim.x * gridDim.x * VecSize) {
    InT in_vec[VecSize];
    LoadT* in_value = reinterpret_cast<LoadT*>(&in_vec);
    *in_value = *reinterpret_cast<const LoadT*>(&in[i]);

    OutT out_vec[VecSize];
#pragma unroll
    for (int ii = 0; ii < VecSize; ii++) {
      out_vec[ii] = static_cast<OutT>(in_vec[ii]);
    }

    *(reinterpret_cast<StoreT*>(&out[i])) =
        *reinterpret_cast<StoreT*>(&out_vec[0]);
  }
}

Z
Zhang Ting 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
template <typename InT, typename OutT>
__global__ void CastCUDAKernel(const InT* in, const int64_t N, OutT* out) {
  CUDA_KERNEL_LOOP(index, N) { out[index] = static_cast<OutT>(in[index]); }
}

template <typename InT>
struct CastOpFunctor<platform::CUDADeviceContext, InT> {
  const framework::Tensor* in_;
  framework::Tensor* out_;
  const platform::CUDADeviceContext& ctx_;
  CastOpFunctor(const framework::Tensor* in, framework::Tensor* out,
                const platform::CUDADeviceContext& ctx)
      : in_(in), out_(out), ctx_(ctx) {}

  template <typename OutT>
  void apply() const {
    auto* in = in_->data<InT>();
    auto size = in_->numel();
    auto* out = out_->mutable_data<OutT>(ctx_.GetPlace());
    platform::GpuLaunchConfig config =
        platform::GetGpuLaunchConfig1D(ctx_, size);
Z
Zhang Ting 已提交
80 81 82 83 84 85 86 87 88 89
    int vec_size = VectorizedSize<OutT>(out);
    if (!std::is_same<InT, OutT>::value && vec_size == 4 && size % 4 == 0) {
      VecCastCUDAKernel<InT, OutT, 4><<<
          config.block_per_grid, config.thread_per_block, 0, ctx_.stream()>>>(
          in, size, out);
    } else {
      CastCUDAKernel<InT, OutT><<<config.block_per_grid,
                                  config.thread_per_block, 0, ctx_.stream()>>>(
          in, size, out);
    }
Z
Zhang Ting 已提交
90 91 92 93 94
  }
};

}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
95

96
namespace ops = paddle::operators;
Y
Yu Yang 已提交
97

98
#ifdef PADDLE_WITH_HIP
99 100 101 102 103 104 105 106
REGISTER_OP_CUDA_KERNEL(
    cast, ops::CastOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, double>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, uint8_t>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
107 108 109 110 111
                      paddle::platform::float16>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::complex64>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::complex128>);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#else
REGISTER_OP_CUDA_KERNEL(
    cast, ops::CastOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, double>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, uint8_t>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::bfloat16>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::complex64>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::complex128>);
#endif