MKLDNNBatchNormLayer.cpp 10.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNBatchNormLayer.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_batch_norm, MKLDNNBatchNormLayer);

const real MKLDNNBatchNormLayer::EPS = 1E-5;

bool MKLDNNBatchNormLayer::init(const LayerMap& layerMap,
                                const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

  // first one is input layer
  // the other two are created in config_parser.py saving moving mean and var
  CHECK_EQ(inputLayers_.size(), 3U);
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK_EQ(inputLayers_.size(), size_t(config_.inputs_size()));

  const ImageConfig& conf = config_.inputs(0).image_conf();
  ic_ = conf.channels();
  ih_ = inputLayers_[0]->getOutput().getFrameHeight();
  iw_ = inputLayers_[0]->getOutput().getFrameWidth();
  if (iw_ == 0 && ih_ == 0) {
    iw_ = conf.img_size();
    ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
  }
  oc_ = ic_;
  oh_ = ih_;
  ow_ = iw_;
  if (config_.has_use_global_stats()) {
    useGlobalStats_ = config_.use_global_stats();
  }
  movingAvgFraction_ = config_.moving_average_fraction();
  VLOG(MKLDNN_BASE) << "--- " << (useGlobalStats_ ? "use" : "do not use")
                    << " --- global stats";
  VLOG(MKLDNN_BASE) << "Moving average fraction: " << movingAvgFraction_;

  initWeight();
  movingMean_.reset(new Weight(oc_, 1, parameters_[1], 0));
  movingVar_.reset(new Weight(oc_, 1, parameters_[2], 0));
  return true;
}

void MKLDNNBatchNormLayer::initWeight() {
  weight_.reset(new Weight(1, oc_, parameters_[0]));
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
  }
  CHECK_EQ(weight_ != nullptr, biases_ != nullptr)
      << "only support have both weight and bias, or neither";
  if (weight_ && weight_->getW()) {
    CHECK(biases_ && biases_->getW());
    valueScaleShift_ = Matrix::create(2, oc_, false, false);
    valueScaleShift_->zeroMem();
    VectorPtr scale(new CpuVector(oc_, valueScaleShift_->getMemoryHandle(), 0));
    VectorPtr shift(
        new CpuVector(oc_, valueScaleShift_->getMemoryHandle(), oc_));
    const VectorPtr& wgt = parameters_[0]->getBuf(PARAMETER_VALUE);
    const VectorPtr& bias = biasParameter_->getBuf(PARAMETER_VALUE);
    scale->copyFrom(*wgt);
    shift->copyFrom(*bias);
    wgt->setData(valueScaleShift_->getData());
    bias->setData(valueScaleShift_->getData() + oc_);
  }
  if (weight_ && weight_->getWGrad()) {
    CHECK(biases_ && biases_->getWGrad());
    gradScaleShift_ = Matrix::create(2, oc_, false, false);
    gradScaleShift_->zeroMem();
    const VectorPtr& wgt = parameters_[0]->getBuf(PARAMETER_GRADIENT);
    const VectorPtr& bias = biasParameter_->getBuf(PARAMETER_GRADIENT);
    wgt->setData(gradScaleShift_->getData());
    bias->setData(gradScaleShift_->getData() + oc_);
  }
}

void MKLDNNBatchNormLayer::convertWeightsFromPaddle() {
  if (hasInitedWgt_) {
    return;
  }
  // prepare mean and var if necessary
  if (useGlobalStats_) {
    CHECK(mean_);
    CHECK(var_);
    mean_->copyFrom(*(movingMean_->getW()));
    var_->copyFrom(*(movingVar_->getW()));
  }
  hasInitedWgt_ = true;
}

void MKLDNNBatchNormLayer::calMovingMeanAndVar() {
  // calculating and saving moving mean and variance
  CHECK_EQ(useGlobalStats_, false);
T
tensor-tang 已提交
112 113 114 115
  movingMean_->getW()->add(
      *mean_, movingAvgFraction_, 1.0 - movingAvgFraction_);
  // here var is v^2
  movingVar_->getW()->add(*var_, movingAvgFraction_, 1.0 - movingAvgFraction_);
T
tensor-tang 已提交
116 117 118
}

void MKLDNNBatchNormLayer::reshape(
119
    int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
T
tensor-tang 已提交
120 121
  reshapeInput(bs, ih, iw);
  oh = ih;
T
tensor-tang 已提交
122
  ow = iw;
T
tensor-tang 已提交
123 124 125 126 127 128 129 130
  // ic_ and oc can not be changed
  CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
      << "Input channel can not be changed";
  reshapeOutput(oh, ow);
  resizeOutput(bs, oc * oh * ow);
}

void MKLDNNBatchNormLayer::resetFwd(std::vector<primitive>& pipeline,
131
                                    std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
132
                                    MKLDNNMatrixPtr& out) {
T
tensor-tang 已提交
133 134 135
  // In training phase, it will always calculate mean and var,
  // so useGlobalStats must be false.
  // In scoring phase, it depends on useGlobalStats choice.
T
tensor-tang 已提交
136 137 138 139 140
  if (passType_ != PASS_TEST && useGlobalStats_ == true) {
    LOG(WARNING) << "use_global_stats is invalid setting in training phase";
    useGlobalStats_ = false;
  }

141
  resetFwdBuffers(inputs[0], wgtVal_, out);
T
tensor-tang 已提交
142

143
  resetFwdPD(fwdPD_, inputs[0], wgtVal_, out);
T
tensor-tang 已提交
144

145
  resetFwdPipeline(pipeline, fwdPD_, inputs[0], wgtVal_, out);
T
tensor-tang 已提交
146 147 148 149 150 151 152
}

void MKLDNNBatchNormLayer::resetBwd(std::vector<primitive>& pipeline,
                                    MKLDNNMatrixPtr& in,
                                    MKLDNNMatrixPtr& out) {
  std::shared_ptr<bn_bwd::primitive_desc> pd;

153
  resetBwdBuffers(in, wgtGrad_, out);
T
tensor-tang 已提交
154

155
  resetBwdPD(pd, in, wgtGrad_, out);
T
tensor-tang 已提交
156

157
  resetBwdPipeline(pipeline, pd, in, wgtGrad_, out);
T
tensor-tang 已提交
158 159 160 161 162
}

void MKLDNNBatchNormLayer::forward(PassType passType) {
  MKLDNNLayer::forward(passType);

T
tensor-tang 已提交
163
  // calculate and save moving mean and variance
T
tensor-tang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  if (passType_ != PASS_TEST) {
    calMovingMeanAndVar();
  }
}

void MKLDNNBatchNormLayer::updateWeights(const UpdateCallback& callback) {
  weight_->getParameterPtr()->incUpdate(callback);
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

void MKLDNNBatchNormLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                           MKLDNNMatrixPtr& wgt,
                                           MKLDNNMatrixPtr& out) {
  resetInValue(in);

  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
  CHECK(in);
  auto outPD =
      MKLDNNMatrix::createPrimitiveDesc(outDims, in->getFormat(), engine_);
  resetOutValue(out, outPD);

  if (valueScaleShift_) {
    auto pd = MKLDNNMatrix::createPrimitiveDesc({2, oc_}, format::nc, engine_);
    resetWithMatrix(wgt, valueScaleShift_, pd);
  }
  if (passType_ != PASS_TEST || useGlobalStats_) {
    auto pd = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_);
    mean_ = MKLDNNMatrix::create(pd);
    var_ = MKLDNNMatrix::create(pd);
  }
}

void MKLDNNBatchNormLayer::resetFwdPD(
    std::shared_ptr<bn_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr in,
    MKLDNNMatrixPtr wgt,
    MKLDNNMatrixPtr out) {
  flags_ = 0u;
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
  if (useGlobalStats_) {
    flags_ = (flags_ | batch_normalization_flag::use_global_stats);
  }
  if (wgt) {
    flags_ = (flags_ | batch_normalization_flag::use_scale_shift);
  }
  auto fwdDesc = bn_fwd::desc(pk, in->getMemoryDesc(), EPS, flags_);
  pd.reset(new bn_fwd::primitive_desc(fwdDesc, engine_));
T
tensor-tang 已提交
214
  CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
T
tensor-tang 已提交
215
  if (wgt) {
T
tensor-tang 已提交
216
    CHECK_PRIMITIVE_DESC_EQ(wgt, pd->weights_primitive_desc());
T
tensor-tang 已提交
217 218
  }
  if (passType_ != PASS_TEST || useGlobalStats_) {
T
tensor-tang 已提交
219 220
    CHECK_PRIMITIVE_DESC_EQ(mean_, pd->mean_primitive_desc());
    CHECK_PRIMITIVE_DESC_EQ(var_, pd->variance_primitive_desc());
T
tensor-tang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  }
}

void MKLDNNBatchNormLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<bn_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& out) {
  if (passType_ == PASS_TEST) {
    if (useGlobalStats_) {
      fwd_.reset(wgt != nullptr ? new bn_fwd(*pd,
                                             *in,
                                             (const primitive::at)(*mean_),
                                             (const primitive::at)(*var_),
                                             *wgt,
                                             *out)
                                : new bn_fwd(*pd,
                                             *in,
                                             (const primitive::at)(*mean_),
                                             (const primitive::at)(*var_),
                                             *out));
    } else {
      fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, *in, *wgt, *out)
                                : new bn_fwd(*pd, *in, *out));
    }
  } else {
    CHECK_EQ(useGlobalStats_, false)
        << "useGlobalStats should be false in training";
    fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, *in, *wgt, *out, *mean_, *var_)
                              : new bn_fwd(*pd, *in, *out, *mean_, *var_));
  }
  pipeline.push_back(*fwd_);
}

void MKLDNNBatchNormLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                           MKLDNNMatrixPtr& wgt,
                                           MKLDNNMatrixPtr& out) {
259
  CHECK(inVals_[0] && outVal_);
T
tensor-tang 已提交
260
  resetOutGrad(out, outVal_->getPrimitiveDesc());
261
  resetInGrad(in, inVals_[0]->getPrimitiveDesc());
T
tensor-tang 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  if (gradScaleShift_) {
    CHECK(wgtVal_);
    resetWithMatrix(wgt, gradScaleShift_, wgtVal_->getPrimitiveDesc());
  }
}

void MKLDNNBatchNormLayer::resetBwdPD(
    std::shared_ptr<bn_bwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& out) {
  pd = nullptr;
  if (in == nullptr) {
    return;
  }
T
tensor-tang 已提交
277
  CHECK_PRIMITIVE_DESC_EQ(out, in->getPrimitiveDesc());
T
tensor-tang 已提交
278 279 280 281
  auto md = in->getMemoryDesc();
  auto bwdDesc = bn_bwd::desc(prop_kind::backward, md, md, EPS, flags_);
  pd.reset(new bn_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
  CHECK(pd->weights_primitive_desc() == fwdPD_->weights_primitive_desc());
T
tensor-tang 已提交
282 283 284
  CHECK_PRIMITIVE_DESC_EQ(wgt, pd->diff_weights_primitive_desc());
  CHECK_PRIMITIVE_DESC_EQ(mean_, pd->mean_primitive_desc());
  CHECK_PRIMITIVE_DESC_EQ(var_, pd->variance_primitive_desc());
T
tensor-tang 已提交
285 286 287 288 289 290 291 292 293 294 295
}

void MKLDNNBatchNormLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<bn_bwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& out) {
  if (pd == nullptr) {
    return;
  }
296
  CHECK(inVals_[0]);
T
tensor-tang 已提交
297 298
  bwdData_.reset(
      wgt && wgtVal_
299 300 301
          ? new bn_bwd(
                *pd, *inVals_[0], *mean_, *var_, *out, *wgtVal_, *in, *wgt)
          : new bn_bwd(*pd, *inVals_[0], *mean_, *var_, *out, *in));
T
tensor-tang 已提交
302 303 304 305
  pipeline.push_back(*bwdData_);
}

}  // namespace paddle