basic_engine.cc 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/basic_engine.h"

#include <algorithm>
#include <memory>
#include <queue>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
26

27 28 29 30 31 32 33
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/profiler.h"

34 35
DECLARE_bool(sort_sum_gradient);

36 37 38
namespace paddle {
namespace imperative {

39
void BasicEngine::Init(VarBase* var, bool retain_graph) {
40
  retain_graph_ = retain_graph;
41
  init_node_ = var->GradVarBase()->GradNode();
42 43 44 45 46 47 48 49 50 51 52 53 54 55
  PADDLE_ENFORCE_EQ(var->GradVarBase()->GraphIsFreed(), false,
                    platform::errors::Unavailable(
                        "%s trying to backward through the same graph a second "
                        "time, but this graph have already been freed. Please "
                        "specify Tensor.backward(retain_graph=True) when "
                        "calling backward at the first time.",
                        var->Name()));

  if (!retain_graph) {
    VLOG(5) << "Clear the auto-grad graph from grad var " << var->Name()
            << " because of retain_graph=False when calling backward";
    var->GradVarBase()->SetGraphIsFreed(true);
    var->GradVarBase()->ClearGradNode();
  }
56 57 58 59 60 61 62 63

  if (init_node_ == nullptr || var->OverridedStopGradient()) {
    VLOG(3) << "Skip auto grad since there is no grad op for var or loss is "
               "stop_gradient=True: "
            << var->Name();
    return;
  }

64
  VLOG(3) << "Init first node of backward";
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  PADDLE_ENFORCE_EQ(
      var->HasGradVar(), true,
      platform::errors::NotFound("Grad variable not exist for variable %s",
                                 var->Name()));

  auto& fwd_var = var->Var().Get<framework::LoDTensor>();
  auto* grad_var =
      var->GradVarBase()->MutableVar()->GetMutable<framework::LoDTensor>();
  VLOG(6) << "init loss grad:" << var->GradVarBase()->Name()
          << " as stop_gradient false";
  var->GradVarBase()->InnerSetOverridedStopGradient(false);
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(fwd_var.place());
  grad_var->Resize(fwd_var.dims());
  grad_var->mutable_data(fwd_var.place(), fwd_var.type());
  operators::math::set_constant(*dev_ctx, grad_var, 1.0);
}

void BasicEngine::CheckBackwardInputs(const OpBase& op) {
  for (auto& pair : op.GetInsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (auto& var : pair.second) {
      if (!var) {
        continue;
      }

      auto* inner_var = var->MutableVar();
      framework::Tensor* tensor = nullptr;
      if (!inner_var->IsInitialized() ||
          inner_var->IsType<framework::LoDTensor>()) {
        tensor = inner_var->GetMutable<framework::LoDTensor>();
      }

      if (tensor && !tensor->IsInitialized()) {
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(op.place());
103 104 105 106 107 108 109 110
        // NOTE(zhiqiu): since grad variable is ungenerated, so the dtype is not
        // correct. var->DataType() returns the default dtype, which is float32.
        // Here, we use the type of the corresponding forward datatype.

        tensor->mutable_data(op.place(), var->ForwardDataType());
        VLOG(6) << "Set ungenerated Grad: " << var->Name()
                << " as zero with dtype "
                << framework::DataTypeToString(var->ForwardDataType());
111 112 113 114 115 116
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
    }
  }
}

117 118 119
void BasicEngine::PrepareGradAccumulators(
    const OpBase& op,
    const std::vector<std::shared_ptr<GradOpNode>>& grad_pending_nodes) {
120 121 122 123 124 125 126 127
  for (const auto& pair : op.GetOutsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (const auto& var : pair.second) {
      if (!var) continue;

128 129 130 131 132 133 134 135
      if (!var->HasGradNode()) {
        auto& accumulator = accumulators_[var.get()];
        if (!accumulator) {
          if (FLAGS_sort_sum_gradient) {
            accumulator.reset(new SortedGradientAccumulator(var.get()));
          } else {
            accumulator.reset(new EagerGradientAccumulator(var.get()));
          }
136 137
        }

138
        accumulator->IncreaseRefCnt();
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        VLOG(3) << "Prepare to acccumulate variable grad " << var->Name() << "("
                << var.get()
                << ") that don't have grad node  with reference count "
                << accumulator->RefCnt();

        if (var->HasLeafHooks()) {
          VLOG(3) << "Grad variable wrapper (" << var->Name()
                  << ") has leaf grad hooks.";
          PADDLE_ENFORCE_NE(
              var->HasGradNode(), true,
              platform::errors::PermissionDenied(
                  "Only leaf Tensor's gradient can append hook to "
                  "Gradientaccumulator."));
          accumulator->SetPostHooks(var->GetLeafHooks());
        }
      } else {
        // Because Inplace op overwrites the grad_node of the input grad_var. So
        // only the information of grad_pending_node can be used to find the
        // grad_node of grad_var.
        bool find_grad_node_of_var = false;
        for (auto& grad_pending_node : grad_pending_nodes) {
          PADDLE_ENFORCE_NOT_NULL(
              grad_pending_node,
              platform::errors::NotFound("Grad pending node is nullptr."));
          for (auto& grad_pending_op : *grad_pending_node) {
            VLOG(6) << "Determine whether var (" << var->Name()
                    << ") is the input var of grad_pending_op ("
                    << grad_pending_op.Type() << ").";
            grad_pending_op.EnforceHasInOut();
            for (const auto& grad_pending_op_ins_pair :
                 grad_pending_op.GetInsMap()) {
              if (!grad_pending_op_ins_pair.second.IsGrad()) {
                continue;
              }
              for (const auto& pending_in_var :
                   grad_pending_op_ins_pair.second) {
                if (var == pending_in_var) {
                  VLOG(6) << "Var (" << var->Name()
                          << ") is the input var of grad_pending_op ("
                          << grad_pending_op.Type() << ").";
                  find_grad_node_of_var = true;
                  break;
                }
              }
              if (find_grad_node_of_var) {
                break;
              }
            }
          }
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
          if (find_grad_node_of_var) {
            auto& accumulator =
                accumulators_with_grad_node_[grad_pending_node][var.get()];

            if (!accumulator) {
              if (FLAGS_sort_sum_gradient) {
                accumulator.reset(new SortedGradientAccumulator(var.get()));
              } else {
                accumulator.reset(new EagerGradientAccumulator(var.get()));
              }
            }

            accumulator->IncreaseRefCnt();

            VLOG(3) << "Prepare to acccumulate variable grad " << var->Name()
                    << "(" << var.get()
                    << ") that has grad node with reference count "
                    << accumulator->RefCnt();
            break;
          }
        }
        PADDLE_ENFORCE_EQ(
            find_grad_node_of_var, true,
            platform::errors::NotFound(
                "No grad node corresponding to grad Tensor (%s) was found.",
                var->Name()));
216
      }
217 218 219 220 221 222 223
    }
  }
}

void BasicEngine::PrepareDeps() {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
224 225 226 227 228 229 230 231 232 233
      platform::errors::AlreadyExists("Op deps are not empty before preparing "
                                      "it for backward network execution."));
  PADDLE_ENFORCE_EQ(accumulators_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators are not empty before preparing it for "
                        "backward network execution."));
  PADDLE_ENFORCE_EQ(accumulators_with_grad_node_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators with grad_node as the key are not empty "
                        "before preparing it for backward network execution."));
234 235 236 237 238 239 240 241 242 243 244

  std::queue<GradOpNode*> q;
  std::unordered_set<GradOpNode*> visited;

  q.push(init_node_.get());
  visited.insert(init_node_.get());

  while (!q.empty()) {
    auto* cur_node = q.front();
    q.pop();

245 246
    const auto& grad_pending_nodes = cur_node->GradPendingNodes();

247
    for (auto& cur_op : *cur_node) {
Z
Zeng Jinle 已提交
248
      cur_op.EnforceHasInOut();
249
      PrepareGradAccumulators(cur_op, grad_pending_nodes);
250 251 252 253 254
    }

    for (auto& grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
255
          platform::errors::NotFound("Grad pending node is nullptr."));
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

void BasicEngine::Execute() {
  if (init_node_ == nullptr) {
    return;
  }

  PrepareDeps();
  // Start execute Computation graph
  std::queue<std::shared_ptr<GradOpNode>> q;
  q.push(std::move(init_node_));

  size_t op_num = 0;

  while (!q.empty()) {
    auto shared_cur_node = std::move(q.front());
    q.pop();

281 282
    auto& inplace_grad_name_map = shared_cur_node->InplaceGradNameMap();

283 284 285 286 287 288
    for (auto& cur_op : *shared_cur_node) {
      ++op_num;

      // CheckBackWardInput
      CheckBackwardInputs(cur_op);

289
      // Step 1: Run Backward OP
290 291 292 293
      auto& bwd_ins = cur_op.GetInsMap();
      auto& bwd_outs = cur_op.GetOutsMap();

      NameVarMap<VariableWrapper> tmp_outs(bwd_outs);
294 295 296
      // 1. construct the temp output map, avoid to disrupt graph
      // 2. replace the element in the map by temp var, because a
      // var may be coresponding to several grad var in one op
297 298 299 300 301 302 303 304 305 306
      for (auto& pair : tmp_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }

        for (auto& var : pair.second) {
          if (!var) {
            continue;
          }

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
          std::unordered_map<VariableWrapper*,
                             std::unique_ptr<GradientAccumulator>>::iterator
              iter;
          if (!var->HasGradNode()) {
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with no grad_node.";
            iter = accumulators_.find(var.get());
            PADDLE_ENFORCE_EQ(
                iter != accumulators_.end(), true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          } else {
            bool flag_find_grad = false;
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with grad_node.";
            for (auto& grad_pending_node :
                 shared_cur_node->GradPendingNodes()) {
              const auto& iter_grad_node =
                  accumulators_with_grad_node_.find(grad_pending_node);
              if (iter_grad_node != accumulators_with_grad_node_.end()) {
                iter = iter_grad_node->second.find(var.get());
                if (iter != iter_grad_node->second.end()) {
                  flag_find_grad = true;
                  break;
                }
              }
            }
            PADDLE_ENFORCE_EQ(
                flag_find_grad, true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          }
339

340 341
          // leaf_accumulators_ : hooks and accumulate-grad for leaf tensor,
          // it should be orderly and not reapeated.
342
          if (var->IsLeafGrad()) {
343 344 345 346
            if (std::find(leaf_accumulators_.begin(), leaf_accumulators_.end(),
                          iter->second.get()) == leaf_accumulators_.end()) {
              leaf_accumulators_.push_back(iter->second.get());
            }
347 348 349 350

            if (iter->second->HasInnerVar()) {
              var = iter->second->InnerVar();
            }
351 352
          }

353 354 355
          if (var->OverridedStopGradient() || iter->second->RefCnt() > 1) {
            auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
            tmp_var->SetType(var->Type());
356
            tmp_var->SetForwardDataType(var->ForwardDataType());
357 358 359 360
            var = tmp_var;
            need_accu_var_list_.emplace_back(iter->second.get(), var);
            VLOG(10) << "create temporary var of " << var->Name()
                     << " for sum gradient within this graph!";
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
          } else if (!inplace_grad_name_map.empty() &&
                     inplace_grad_name_map.count(pair.first)) {
            // When calculate Inplace grad op, create a new output var.
            // If a tmp var has been created, there is no need to create it
            // again.
            for (auto& in_var :
                 bwd_ins.at(inplace_grad_name_map.at(pair.first))) {
              if (in_var == var) {
                auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
                tmp_var->SetType(var->Type());
                tmp_var->SetForwardDataType(var->ForwardDataType());
                inplace_output_grad_var_list_.emplace_back(var, tmp_var);
                var = tmp_var;
                VLOG(10) << "Inplace grad op does not use the Inplace "
                            "strategy, a temporary output var ("
                         << var->Name() << ") will be created.";
                break;
              }
            }
380
          }
381 382 383
        }
      }

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
      VLOG(4) << "Check whether there is any inplace operation affecting "
                 "gradient calculation.";
      for (auto& pair : bwd_ins) {
        for (auto& var_wrapper : pair.second) {
          auto wrapper_version_snapshot = var_wrapper->InplaceVersionSnapshot();
          auto tensor_version =
              var_wrapper->MutableVar()->CurrentInplaceVersion();
          PADDLE_ENFORCE_EQ(
              tensor_version, wrapper_version_snapshot,
              platform::errors::PermissionDenied(
                  "Tensor '%s' used in gradient computation in grad op '%s' "
                  "has been "
                  "modified by an inplace operation. "
                  "Its version is %s but the expected version is %s. "
                  "Please fix your code to void calling an inplace operator "
                  "after using the Tensor which will used in gradient "
                  "computation.",
                  var_wrapper->Name(), cur_op.Type(), tensor_version,
                  wrapper_version_snapshot));

          VLOG(6) << " The version of Tensor '" << var_wrapper->Name()
                  << "' is [ " << wrapper_version_snapshot << " ]";
        }
      }

409 410 411 412 413 414
      {
        VLOG(3) << "Start to execute grad op " << cur_op.Type();
        OpBase::Run(cur_op.InnerOp(), bwd_ins, tmp_outs, cur_op.Attrs(),
                    cur_op.place());
      }

415 416 417 418
      for (auto& pair : inplace_output_grad_var_list_) {
        *pair.first = std::move(*pair.second);
      }

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
      // Step 2: Sum Gradient of This graph
      for (auto& pair : need_accu_var_list_) {
        pair.first->SumGrad(std::move(pair.second), cur_op.id());
      }

      // Step 3: Call Hooks && Sum Gradient with Pre-Graph && Call BackwardHooks
      for (auto* accumulator : leaf_accumulators_) {
        if (!accumulator->SumGradCompleted()) {
          continue;
        }
        // 1. Call Hooks for **inner_var_**

        // 2. Sum Gradient with Previous Graph
        accumulator->AccumulateGrad();

        // 3. Call backward Hooks for **var_**
435 436 437 438 439
        if (accumulator->HasPostHooks()) {
          accumulator->CallBackwardPostHooks();
        }
      }

440
      need_accu_var_list_.clear();
441
      inplace_output_grad_var_list_.clear();
442
      leaf_accumulators_.clear();
443

444
      if (!retain_graph_) {
445
        VLOG(3) << "Remove op after op " << cur_op.Type() << " runs";
446 447
        cur_op.ClearBackwardTrace();
      }
448 449 450 451
    }

    // Step 3: Collect ready ops
    for (auto& grad_pending_node : shared_cur_node->GradPendingNodes()) {
452 453 454
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node is nullptr."));
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }

      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }
  Clear();

  VLOG(1) << "Backward op number: " << op_num;
}

void BasicEngine::Clear() {
  init_node_.reset();
  node_deps_.clear();
  accumulators_.clear();
474
  accumulators_with_grad_node_.clear();
475
  need_accu_var_list_.clear();
476
  leaf_accumulators_.clear();
477 478 479 480
}

}  // namespace imperative
}  // namespace paddle