crop_op.cc 7.2 KB
Newer Older
W
whs 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/crop_op.h"
S
sneaxiy 已提交
16 17 18
#include <memory>
#include <string>
#include <vector>
W
wanghaoshuang 已提交
19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using framework::Tensor;

class CropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
30 31 32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of CropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of CropOp should not be null.");
    auto x_dim = ctx->GetInputDim("X");
    if (!ctx->HasInput("Y")) {
      auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
W
wanghaoshuang 已提交
37
      PADDLE_ENFORCE_EQ(
38
          int64_t(shape.size()), x_dim.size(),
T
tianshuo78520a 已提交
39
          "Shape size should be equal to dimension size of input tensor.");
W
wanghaoshuang 已提交
40
      std::vector<int64_t> tensor_shape(shape.size());
41
      for (size_t i = 0; i < shape.size(); ++i) {
42
        tensor_shape[i] = static_cast<int64_t>(shape[i]);
W
wanghaoshuang 已提交
43
      }
Q
Qiao Longfei 已提交
44
      ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
W
wanghaoshuang 已提交
45
    } else {
Q
Qiao Longfei 已提交
46 47
      auto y_dim = ctx->GetInputDim("Y");
      PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(y_dim),
W
wanghaoshuang 已提交
48 49
                        "Tensor rank of both CropOp's "
                        "inputs must be same.");
Q
Qiao Longfei 已提交
50
      ctx->SetOutputDim("Out", y_dim);
W
wanghaoshuang 已提交
51 52
    }
  }
53 54 55

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
56 57 58
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
59
  }
W
wanghaoshuang 已提交
60 61 62 63
};

class CropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
65 66
    AddInput("X",
             "The input of pad op. "
K
Kexin Zhao 已提交
67
             "The input should be a k-D tensor(k > 0 and k < 7).");
68
    AddInput("Y",
K
Kexin Zhao 已提交
69 70
             "The input used as reference for cropping, "
             "which is of the same dimensions as X.")
Y
Yang Yang(Tony) 已提交
71
        .AsDispensable();
F
stash  
fengjiayi 已提交
72 73 74 75 76
    AddInput("Offsets",
             "The input used to describe offsets in runtime, which is a "
             "1-D vector whose size equals to the rank of input 'X'. The "
             "elements data type must be int.")
        .AsDispensable();
77
    AddOutput("Out",
K
Kexin Zhao 已提交
78 79
              "The output of crop op, "
              "which is of the same dimensions as X.");
80
    AddAttr<std::vector<int>>("offsets",
K
Kexin Zhao 已提交
81 82
                              "A list<int> describing offsets to be cropped. "
                              "The size of offsets list should be the same as "
F
stash  
fengjiayi 已提交
83 84
                              "the dimension size of input X.")
        .SetDefault(std::vector<int>());
85
    AddAttr<std::vector<int>>("shape",
K
Kexin Zhao 已提交
86 87 88
                              "A list<int> describing the shape of output. "
                              "The size of shape list should be the same as "
                              "the dimension size of input X.")
89
        .SetDefault(std::vector<int>());
W
wanghaoshuang 已提交
90 91
    AddComment(R"DOC(
Crop Operator.
K
Kexin Zhao 已提交
92

93 94
Crop input into output, as specified by offsets and shape.

F
stash  
fengjiayi 已提交
95 96 97 98 99 100 101 102 103 104 105
There are two ways to set the offsets:
1. In runtime: Using the input 'Offsets', which is a Vairbale and can be 
               output of other operators. This way is suitable for 
               dynamic offsets.
2. In network configuration: Using the attribute 'offsets', which will be 
                             set in Python configure script. This way is 
                             suitable for fixed offsets.
You CANNOT use these two ways at the same time. An exception will be raised 
if input 'Offset' is configured and meanwhile the attribute 'offsets' is 
not empty.

Q
Qiao Longfei 已提交
106
There are two ways to set shape:
K
Kexin Zhao 已提交
107
1. reference input: crop input X into the same shape as reference input.
Q
Qiao Longfei 已提交
108
                    The dimension of reference input should
K
Kexin Zhao 已提交
109 110 111 112
                    be the same as the dimension of input X.
2. shape list: crop input X into the shape described by a list<int>.
               The size of shape list should be the same as
               the dimension size of input X.
113 114 115

The input should be a k-D tensor(k > 0 and k < 7). As an example:

W
wanghaoshuang 已提交
116 117
Case 1:
Given
118

119 120
    X = [[0, 1, 2, 0, 0]
         [0, 3, 4, 0, 0]
K
Kexin Zhao 已提交
121
         [0, 0, 0, 0, 0]],
122

Q
Qiao Longfei 已提交
123
and
124

K
Kexin Zhao 已提交
125
    offsets = [0, 1],
126 127

and
Q
Qiao Longfei 已提交
128

K
Kexin Zhao 已提交
129
    shape = [2, 2],
130

K
Kexin Zhao 已提交
131
we get:
132

133
    Out = [[1, 2],
K
Kexin Zhao 已提交
134
           [3, 4]].
135

W
wanghaoshuang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

Case 2:
Given

    X = [[0, 1, 2, 5, 0]
         [0, 3, 4, 6, 0]
         [0, 0, 0, 0, 0]],

and

    offsets = [0, 1],

and

    Y = [[0, 0, 0]
         [0, 0, 0]],

we get:

    Out = [[1, 2, 5],
           [3, 4, 6]].
W
wanghaoshuang 已提交
157 158 159 160 161 162 163 164
)DOC");
  }
};

class CropOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

165
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
166 167 168 169 170 171 172
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
173
    }
W
wanghaoshuang 已提交
174
  }
175 176 177

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
178 179 180
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
181
  }
W
wanghaoshuang 已提交
182 183
};

H
hong 已提交
184 185
template <typename T>
class CropGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
186
 public:
H
hong 已提交
187
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
188 189

 protected:
190
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
191
    op->SetType("crop_grad");
H
hong 已提交
192 193 194 195
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    if (this->HasInput("Offsets")) {
      op->SetInput("Offsets", this->Input("Offsets"));
S
sneaxiy 已提交
196
    }
H
hong 已提交
197 198
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
199 200 201
  }
};

202 203
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(GropNoNeedBufferVarInference, "Y");

W
wanghaoshuang 已提交
204 205 206 207
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
208
REGISTER_OPERATOR(crop, ops::CropOp, ops::CropOpMaker,
H
hong 已提交
209
                  ops::CropGradOpMaker<paddle::framework::OpDesc>,
210 211
                  ops::CropGradOpMaker<paddle::imperative::OpBase>,
                  ops::GropNoNeedBufferVarInference);
Y
Yang Yang 已提交
212
REGISTER_OPERATOR(crop_grad, ops::CropOpGrad);
W
whs 已提交
213
REGISTER_OP_CPU_KERNEL(
S
SunGaofeng 已提交
214 215
    crop, ops::CropKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CropKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
216
REGISTER_OP_CPU_KERNEL(
S
SunGaofeng 已提交
217 218
    crop_grad, ops::CropGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CropGradKernel<paddle::platform::CPUDeviceContext, double>);