graph_survey.html 33.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Survey on Graph &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
111 112 113
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/new_layer_en.html">Write New Layers</a></li>
129
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
148 149 150 151 152 153
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
154 155 156
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
157 158 159 160 161
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Survey on Graph</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="survey-on-graph">
<span id="survey-on-graph"></span><h1>Survey on Graph<a class="headerlink" href="#survey-on-graph" title="Permalink to this headline"></a></h1>
<p>Neural network framework often provides symbolic API for users to write network topology conveniently. This doc manily focus on symbolic API in most popular neural network frameworks, and try to find out how to parse symbolic configuration to a portable file, such as protobuf or json.</p>
<div class="section" id="mxnet">
<span id="mxnet"></span><h2>Mxnet<a class="headerlink" href="#mxnet" title="Permalink to this headline"></a></h2>
<p>The core concept of symbolic API is <code class="docutils literal"><span class="pre">Symbol</span></code>. Mxnet implements <code class="docutils literal"><span class="pre">Symbol</span></code> class in C++, and export to Python using C-API. Please refer to the comments in Mxnet:</p>
<p><code class="docutils literal"><span class="pre">Symbol</span></code> is help class used to represent the operator node in Graph.
<code class="docutils literal"><span class="pre">Symbol</span></code> acts as an interface for building graphs from different components like Variable, Functor and Group. <code class="docutils literal"><span class="pre">Symbol</span></code> is also exported to python front-end (while Graph is not) to enable quick test and deployment. Conceptually, symbol is the final operation of a graph and thus including all the information required (the graph) to evaluate its output value.</p>
<p>A simple network topology wrote by Symbol is as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_symbol</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
    <span class="n">data</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="s1">&#39;data&#39;</span><span class="p">)</span>
    <span class="n">data</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">Flatten</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">)</span>
    <span class="n">fc1</span>  <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span> <span class="o">=</span> <span class="n">data</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;fc1&#39;</span><span class="p">,</span> <span class="n">num_hidden</span><span class="o">=</span><span class="mi">128</span><span class="p">)</span>
    <span class="n">act1</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">Activation</span><span class="p">(</span><span class="n">data</span> <span class="o">=</span> <span class="n">fc1</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;relu1&#39;</span><span class="p">,</span> <span class="n">act_type</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">)</span>
    <span class="n">fc2</span>  <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span> <span class="o">=</span> <span class="n">act1</span><span class="p">,</span> <span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;fc2&#39;</span><span class="p">,</span> <span class="n">num_hidden</span> <span class="o">=</span> <span class="mi">64</span><span class="p">)</span>
    <span class="n">act2</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">Activation</span><span class="p">(</span><span class="n">data</span> <span class="o">=</span> <span class="n">fc2</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;relu2&#39;</span><span class="p">,</span> <span class="n">act_type</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">)</span>
    <span class="n">fc3</span>  <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span> <span class="o">=</span> <span class="n">act2</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;fc3&#39;</span><span class="p">,</span> <span class="n">num_hidden</span><span class="o">=</span><span class="n">num_classes</span><span class="p">)</span>
    <span class="n">mlp</span>  <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">SoftmaxOutput</span><span class="p">(</span><span class="n">data</span> <span class="o">=</span> <span class="n">fc3</span><span class="p">,</span> <span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;softmax&#39;</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">mlp</span>
</pre></div>
</div>
<p>Varible here is actually a Symbol. Every basic Symbol will correspond to one Node, and every Node has its own NodeAttr. There is a op field in NodeAttr class, when a Symbol represents Variable(often input data), the op field is null.</p>
<p>Symbol contains a data member, std::vector<NodeEntry> outputs, and NodeEntry cantains a poniter to Node. We can follow the Node pointer to get all the Graph.</p>
<p>And Symbol can be saved to a Json file.</p>
<p>Here is a detailed example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">mxnet</span> <span class="k">as</span> <span class="nn">mx</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="s1">&#39;data&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span> <span class="n">data</span><span class="o">.</span><span class="n">debug_str</span><span class="p">()</span>
<span class="go">Variable:data</span>

<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">Flatten</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span> <span class="n">data</span><span class="o">.</span><span class="n">debug_str</span><span class="p">()</span>
<span class="go">Symbol Outputs:</span>
<span class="go">    output[0]=flatten0(0)</span>
<span class="go">Variable:data</span>
<span class="go">--------------------</span>
<span class="go">Op:Flatten, Name=flatten0</span>
<span class="go">Inputs:</span>
<span class="go">    arg[0]=data(0) version=0</span>

<span class="gp">&gt;&gt;&gt; </span><span class="n">fc1</span>  <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span> <span class="o">=</span> <span class="n">data</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;fc1&#39;</span><span class="p">,</span> <span class="n">num_hidden</span><span class="o">=</span><span class="mi">128</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span> <span class="n">fc1</span><span class="o">.</span><span class="n">debug_str</span><span class="p">()</span>
<span class="go">Symbol Outputs:</span>
<span class="go">    output[0]=fc1(0)</span>
<span class="go">Variable:data</span>
<span class="go">--------------------</span>
<span class="go">Op:Flatten, Name=flatten0</span>
<span class="go">Inputs:</span>
<span class="go">    arg[0]=data(0) version=0</span>
<span class="go">Variable:fc1_weight</span>
<span class="go">Variable:fc1_bias</span>
<span class="go">--------------------</span>
<span class="go">Op:FullyConnected, Name=fc1</span>
<span class="go">Inputs:</span>
<span class="go">    arg[0]=flatten0(0)</span>
<span class="go">    arg[1]=fc1_weight(0) version=0</span>
<span class="go">    arg[2]=fc1_bias(0) version=0</span>
<span class="go">Attrs:</span>
<span class="go">    num_hidden=128</span>
</pre></div>
</div>
</div>
<div class="section" id="tensorflow">
<span id="tensorflow"></span><h2>TensorFlow<a class="headerlink" href="#tensorflow" title="Permalink to this headline"></a></h2>
<p>The core concept of symbolic API is <code class="docutils literal"><span class="pre">Tensor</span></code>. Tensorflow defines <code class="docutils literal"><span class="pre">Tensor</span></code> in Python. Please refer to the comments in TensorFlow:</p>
<p>A <code class="docutils literal"><span class="pre">Tensor</span></code> is a symbolic handle to one of the outputs of an <code class="docutils literal"><span class="pre">Operation</span></code>. It does not hold the values of that operation&#8217;s output, but instead provides a means of computing those values in a TensorFlow <a class="reference external" href="https://www.tensorflow.org/api_docs/python/tf/Session">Session</a>.</p>
<p>A simple example is as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span>  <span class="c1"># Build a dataflow graph.</span>
  <span class="n">c</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">([[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">3.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]])</span>
  <span class="n">d</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">([[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]])</span>
  <span class="n">e</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span>

  <span class="c1"># Construct a `Session` to execute the graph.</span>
  <span class="n">sess</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span>

  <span class="c1"># Execute the graph and store the value that `e` represents in `result`.</span>
  <span class="n">result</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
</pre></div>
</div>
<p>The main method of <code class="docutils literal"><span class="pre">Tensor</span></code> is as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nd">@property</span>
<span class="k">def</span> <span class="nf">op</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  <span class="sd">&quot;&quot;&quot;The `Operation` that produces this tensor as an output.&quot;&quot;&quot;</span>
  <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_op</span>

<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">dtype</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
   <span class="sd">&quot;&quot;&quot;The `DType` of elements in this tensor.&quot;&quot;&quot;</span>
  <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dtype</span>

<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">graph</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  <span class="sd">&quot;&quot;&quot;The `Graph` that contains this tensor.&quot;&quot;&quot;</span>
  <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_op</span><span class="o">.</span><span class="n">graph</span>

<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">name</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  <span class="sd">&quot;&quot;&quot;The string name of this tensor.&quot;&quot;&quot;</span>
  <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_op</span><span class="o">.</span><span class="n">name</span><span class="p">:</span>
    <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Operation was not named: </span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">_op</span><span class="p">)</span>
  <span class="k">return</span> <span class="s2">&quot;</span><span class="si">%s</span><span class="s2">:</span><span class="si">%d</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_op</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_value_index</span><span class="p">)</span>

<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">device</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  <span class="sd">&quot;&quot;&quot;The name of the device on which this tensor will be produced, or None.&quot;&quot;&quot;</span>
  <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_op</span><span class="o">.</span><span class="n">device</span>
</pre></div>
</div>
<p>Tensor can be taken as target to run by session. Tensor contains all the information of Graph, and tracks data dependency.</p>
<p>Here is a detailed example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">([[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">3.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span> <span class="n">c</span><span class="o">.</span><span class="n">graph</span>
<span class="go">&lt;tensorflow.python.framework.ops.Graph object at 0x10f256d50&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">d</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">([[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span> <span class="n">d</span><span class="o">.</span><span class="n">graph</span>
<span class="go">&lt;tensorflow.python.framework.ops.Graph object at 0x10f256d50&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">e</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span> <span class="n">e</span><span class="o">.</span><span class="n">graph</span>
<span class="go">&lt;tensorflow.python.framework.ops.Graph object at 0x10f256d50&gt;</span>
</pre></div>
</div>
</div>
<div class="section" id="dynet">
<span id="dynet"></span><h2>Dynet<a class="headerlink" href="#dynet" title="Permalink to this headline"></a></h2>
<p>The core concept of symbolic API is <code class="docutils literal"><span class="pre">Expression</span></code>, and Dynet defines <code class="docutils literal"><span class="pre">Expression</span></code> class in C++.</p>
<p>A simple example is as follows:</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">ComputationGraph</span> <span class="n">cg</span><span class="p">;</span>
<span class="n">Expression</span> <span class="n">W</span> <span class="o">=</span> <span class="n">parameter</span><span class="p">(</span><span class="n">cg</span><span class="p">,</span> <span class="n">pW</span><span class="p">);</span>

<span class="n">Expression</span> <span class="n">in</span> <span class="o">=</span> <span class="n">input</span><span class="p">(</span><span class="n">cg</span><span class="p">,</span> <span class="n">xs</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<span class="n">Expression</span> <span class="n">label</span> <span class="o">=</span> <span class="n">input</span><span class="p">(</span><span class="n">cg</span><span class="p">,</span> <span class="n">ys</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<span class="n">Expression</span> <span class="n">pred</span> <span class="o">=</span> <span class="n">W</span> <span class="o">*</span> <span class="n">in</span><span class="p">;</span>
<span class="n">Expression</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">square</span><span class="p">(</span><span class="n">pred</span> <span class="o">-</span> <span class="n">label</span><span class="p">);</span>
</pre></div>
</div>
<p>The input data and parameter are also represented by Expression. Every basci Expression corresponds to a Node. And input data is also a Node.</p>
<p>Expression has a data member ComputationGraph, and ComputationGraph will be modified in users&#8217; configuring process. Expression can be a running target, beacuse Expression contains all dependency.</p>
<p>Here is a detailed example:</p>
<p>write topology in C++</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">ComputationGraph</span> <span class="n">cg</span><span class="p">;</span>
<span class="n">Expression</span> <span class="n">W</span> <span class="o">=</span> <span class="n">parameter</span><span class="p">(</span><span class="n">cg</span><span class="p">,</span> <span class="n">pW</span><span class="p">);</span>
<span class="n">cg</span><span class="o">.</span><span class="n">print_graphviz</span><span class="p">();</span>

<span class="n">Expression</span> <span class="n">pred</span> <span class="o">=</span> <span class="n">W</span> <span class="o">*</span> <span class="n">xs</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<span class="n">cg</span><span class="o">.</span><span class="n">print_graphviz</span><span class="p">();</span>

<span class="n">Expression</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">square</span><span class="p">(</span><span class="n">pred</span> <span class="o">-</span> <span class="n">ys</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<span class="n">cg</span><span class="o">.</span><span class="n">print_graphviz</span><span class="p">();</span>
</pre></div>
</div>
<p>compile and print</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="c1"># first print</span>
<span class="n">digraph</span> <span class="n">G</span> <span class="p">{</span>
  <span class="n">rankdir</span><span class="o">=</span><span class="n">LR</span><span class="p">;</span>
  <span class="n">nodesep</span><span class="o">=.</span><span class="mi">05</span><span class="p">;</span>
  <span class="n">N0</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v0 = parameters(</span><span class="si">{1}</span><span class="s2">) @ 0x7ffe4de00110&quot;</span><span class="p">];</span>
<span class="p">}</span>
<span class="c1"># second print</span>
<span class="n">digraph</span> <span class="n">G</span> <span class="p">{</span>
  <span class="n">rankdir</span><span class="o">=</span><span class="n">LR</span><span class="p">;</span>
  <span class="n">nodesep</span><span class="o">=.</span><span class="mi">05</span><span class="p">;</span>
  <span class="n">N0</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v0 = parameters(</span><span class="si">{1}</span><span class="s2">) @ 0x7ffe4de00110&quot;</span><span class="p">];</span>
  <span class="n">N1</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v1 = v0 * -0.98&quot;</span><span class="p">];</span>
  <span class="n">N0</span> <span class="o">-&gt;</span> <span class="n">N1</span><span class="p">;</span>
<span class="p">}</span>
<span class="c1"># third print</span>
<span class="n">digraph</span> <span class="n">G</span> <span class="p">{</span>
  <span class="n">rankdir</span><span class="o">=</span><span class="n">LR</span><span class="p">;</span>
  <span class="n">nodesep</span><span class="o">=.</span><span class="mi">05</span><span class="p">;</span>
  <span class="n">N0</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v0 = parameters(</span><span class="si">{1}</span><span class="s2">) @ 0x7ffe4de00110&quot;</span><span class="p">];</span>
  <span class="n">N1</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v1 = v0 * -0.98&quot;</span><span class="p">];</span>
  <span class="n">N0</span> <span class="o">-&gt;</span> <span class="n">N1</span><span class="p">;</span>
  <span class="n">N2</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v2 = -1.88387 - v1&quot;</span><span class="p">];</span>
  <span class="n">N1</span> <span class="o">-&gt;</span> <span class="n">N2</span><span class="p">;</span>
  <span class="n">N3</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v3 = -v2&quot;</span><span class="p">];</span>
  <span class="n">N2</span> <span class="o">-&gt;</span> <span class="n">N3</span><span class="p">;</span>
  <span class="n">N4</span> <span class="p">[</span><span class="n">label</span><span class="o">=</span><span class="s2">&quot;v4 = square(v3)&quot;</span><span class="p">];</span>
  <span class="n">N3</span> <span class="o">-&gt;</span> <span class="n">N4</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="conclusion">
<span id="conclusion"></span><h2>Conclusion<a class="headerlink" href="#conclusion" title="Permalink to this headline"></a></h2>
<p>Actually, Symbol/Tensor/Expression in Mxnet/TensorFlow/Dynet are the same level concepts. We use a unified name Expression here, this level concept has following features:</p>
<ul class="simple">
<li>Users wirte topoloy with symbolic API, and all return value is Expression, including input data and parameter.</li>
<li>Expression corresponds with a global Graph, and Expression can also be composed.</li>
<li>Expression tracks all dependency and can be taken as a run target</li>
</ul>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>