jit_code.cc 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using namespace platform::jit;  // NOLINT

T
tensor-tang 已提交
27
bool VXXJitCode::init(int d, int scalar_index) {
28 29
  // It's not necessary to use avx512 since it would slow down the frequency
  // and this kernel is not compute bound.
T
tensor-tang 已提交
30
  return MayIUse(avx) && scalar_index >= 0 && scalar_index <= 2;
31 32
}

T
tensor-tang 已提交
33
void VXXJitCode::generate() {
T
tensor-tang 已提交
34
  // do not need push stack, and do not need save avx512reg if do not use avx512
T
tensor-tang 已提交
35
  int offset = 0;
T
tensor-tang 已提交
36 37 38
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
39 40 41 42 43
  if (scalar_index_ == 1) {
    vbroadcastss(ymm_src1, ptr[param1]);
  } else if (scalar_index_ == 2) {
    vbroadcastss(ymm_src2, ptr[param2]);
  }
44
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
T
tensor-tang 已提交
45 46 47 48 49 50
    if (scalar_index_ != 1) {
      vmovups(ymm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(ymm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
51 52 53 54 55
    if (type_ == operand_type::mul) {
      vmulps(ymm_dst, ymm_src1, ymm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(ymm_dst, ymm_src1, ymm_src2);
    }
T
tensor-tang 已提交
56 57 58
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
T
tensor-tang 已提交
59
    vmovups(ptr[param3 + offset], ymm_dst);
60
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
61
  }
62
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
63
  if (rest >= 4) {
T
tensor-tang 已提交
64 65 66 67 68 69
    if (scalar_index_ != 1) {
      vmovups(xmm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(xmm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
70 71 72 73 74
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
75 76 77
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
78 79 80 81 82
    vmovups(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 4;
    rest -= 4;
  }
  if (rest >= 2) {
T
tensor-tang 已提交
83
    if (scalar_index_ != 1) {
T
tensor-tang 已提交
84
      vmovq(xmm_src1, ptr[param1 + offset]);
T
tensor-tang 已提交
85 86
    }
    if (scalar_index_ != 2) {
T
tensor-tang 已提交
87
      vmovq(xmm_src2, ptr[param2 + offset]);
T
tensor-tang 已提交
88
    }
T
tensor-tang 已提交
89 90 91 92 93
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
94 95 96
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
97 98 99 100 101
    vmovq(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 2;
    rest -= 2;
  }
  if (rest > 0) {
T
tensor-tang 已提交
102
    if (scalar_index_ != 1) {
T
tensor-tang 已提交
103
      vmovss(xmm_src1, ptr[param1 + offset]);
T
tensor-tang 已提交
104 105
    }
    if (scalar_index_ != 2) {
T
tensor-tang 已提交
106
      vmovss(xmm_src2, ptr[param2 + offset]);
T
tensor-tang 已提交
107
    }
T
tensor-tang 已提交
108 109 110 111 112
    if (type_ == operand_type::mul) {
      vmulss(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddss(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
113 114 115
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
116 117 118 119
    vmovss(ptr[param3 + offset], xmm_dst);
  }
  ret();
}
T
tensor-tang 已提交
120

T
tensor-tang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#define ALIGN32 __attribute__((aligned(32)))
#define EXP_HIG 88.3762626647949f
#define EXP_LOW -88.3762626647949f
#define CEPHES_LOG2EF 1.44269504088896341
#define CEPHES_EXP_C1 0.693359375
#define CEPHES_EXP_C2 -2.12194440e-4
#define CEPHES_EXP_P0 1.9875691500E-4
#define CEPHES_EXP_P1 1.3981999507E-3
#define CEPHES_EXP_P2 8.3334519073E-3
#define CEPHES_EXP_P3 4.1665795894E-2
#define CEPHES_EXP_P4 1.6666665459E-1
#define CEPHES_EXP_P5 5.0000001201E-1

#define REPEAT_8TIMES(val) val, val, val, val, val, val, val, val

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#define OFFSET_EXP_ONE 0 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_TWO 1 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_0P5 2 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_HIG 3 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOW 4 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOG2EF 5 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C1 6 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C2 7 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P0 8 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P1 9 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P2 10 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P3 11 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P4 12 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P5 13 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_MAX_INPUT 14 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MAX 15 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MIN 16 * YMM_FLOAT_BLOCK * sizeof(float)
T
tensor-tang 已提交
153 154

static const float exp_float_consts[] ALIGN32 = {
T
tensor-tang 已提交
155
    REPEAT_8TIMES(1.f),
T
tensor-tang 已提交
156
    REPEAT_8TIMES(2.f),
T
tensor-tang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    REPEAT_8TIMES(0.5f),
    REPEAT_8TIMES(EXP_HIG),
    REPEAT_8TIMES(EXP_LOW),
    REPEAT_8TIMES(CEPHES_LOG2EF),
    REPEAT_8TIMES(CEPHES_EXP_C1),
    REPEAT_8TIMES(CEPHES_EXP_C2),
    REPEAT_8TIMES(CEPHES_EXP_P0),
    REPEAT_8TIMES(CEPHES_EXP_P1),
    REPEAT_8TIMES(CEPHES_EXP_P2),
    REPEAT_8TIMES(CEPHES_EXP_P3),
    REPEAT_8TIMES(CEPHES_EXP_P4),
    REPEAT_8TIMES(CEPHES_EXP_P5),
    REPEAT_8TIMES(EXP_MAX_INPUT),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
T
tensor-tang 已提交
172 173 174 175

static const int exp_int_0x7f[] ALIGN32 = {REPEAT_8TIMES(0x7f)};
static int g_tmp_mem[16] ALIGN32 = {0};

176 177 178 179
bool VActJitCode::init(int d, operand_type type) {
  bool ok = MayIUse(avx);
  if (type == operand_type::relu) {
    return ok;
180 181
  } else if (type == operand_type::exp) {
    // exp is slower than mkl when d >= 256
T
tensor-tang 已提交
182
    return ok;  //&& d % 4 == 0 && d < 256;
183
  } else {
T
tensor-tang 已提交
184
    // TODO(TJ): support more
185
    return ok && d % 8 == 0;
186
  }
T
tensor-tang 已提交
187 188
}

189 190 191 192
void VActJitCode::relu_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, ymm_t& ymm_zero) {
  vmaxps(ymm_dst, ymm_zero, ymm_src);
}

T
tensor-tang 已提交
193 194 195 196
void VActJitCode::relu_xmm(xmm_t& xmm_dst, xmm_t& xmm_src, xmm_t& xmm_zero) {
  vmaxps(xmm_dst, xmm_zero, xmm_src);
}

197 198
void VActJitCode::exp_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                          int fy_idx, int mask_idx, int tmp_idx) {
T
tensor-tang 已提交
199
  assert(ymm_src.getIdx() != ymm_dst.getIdx());  // TODO(TJ): use enfore
200 201 202 203 204 205
  // check all idx can not equal
  ymm_t ymm_fx = ymm_t(fx_idx);
  ymm_t ymm_fy = ymm_t(fy_idx);
  ymm_t ymm_mask = ymm_t(mask_idx);
  ymm_t ymm_tmp = ymm_t(tmp_idx);
  reg64_t reg_ptr_global = rax;
T
tensor-tang 已提交
206
  push(reg_ptr_global);
T
tensor-tang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  // express exp(x) as exp(g + n*log(2))
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
  vmulps(ymm_fx, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
  vaddps(ymm_fx, ymm_fx, ymm_tmp);
  vroundps(ymm_fy, ymm_fx, 0x01);
  // if greater, substract 1
  vcmpgtps(ymm_mask, ymm_fy, ymm_fx);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vandps(ymm_mask, ymm_mask, ymm_tmp);
  vsubps(ymm_fx, ymm_fy, ymm_mask);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
  vmulps(ymm_fy, ymm_fx, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
T
tensor-tang 已提交
226 227
  ymm_t ymm_z = ymm_t(ymm_mask.getIdx());
  vmulps(ymm_z, ymm_fx, ymm_tmp);
T
tensor-tang 已提交
228 229 230 231 232 233
  vsubps(ymm_src, ymm_src, ymm_fy);
  vsubps(ymm_src, ymm_src, ymm_z);
  vmulps(ymm_z, ymm_src, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
  vmulps(ymm_dst, ymm_src, ymm_tmp);
  for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
234
       i += (YMM_FLOAT_BLOCK * sizeof(float))) {
T
tensor-tang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    vmovaps(ymm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
    vaddps(ymm_dst, ymm_dst, ymm_tmp);
    vmulps(ymm_dst, ymm_dst, ymm_src);
  }
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmulps(ymm_dst, ymm_dst, ymm_z);
  vaddps(ymm_dst, ymm_dst, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  // build 2^n
  ymm_t ymm_int = ymm_fx;
  vcvttps2dq(ymm_int, ymm_fx);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
  vmovdqa(ymm_tmp, ptr[reg_ptr_global]);
  if (MayIUse(avx2)) {
    vpaddd(ymm_int, ymm_int, ymm_tmp);
    vpslld(ymm_int, ymm_int, 23);
  } else if (MayIUse(avx)) {
T
tensor-tang 已提交
254 255 256 257 258
    xmm_t xtmp1 = xmm_t(ymm_int.getIdx());
    xmm_t xtmp2 = xmm_t(ymm_tmp.getIdx());
    reg64_t reg_ptr_tmp = reg_ptr_global;
    mov(reg_ptr_tmp, reinterpret_cast<size_t>(g_tmp_mem));
    vmovdqa(ptr[reg_ptr_tmp], ymm_int);
259
    vmovdqa(ptr[reg_ptr_tmp + YMM_FLOAT_BLOCK * sizeof(float)], ymm_tmp);
T
tensor-tang 已提交
260 261
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
262
    vmovdqa(ptr[reg_ptr_tmp], xtmp1);
T
tensor-tang 已提交
263
    // next 128bits
T
tensor-tang 已提交
264
    vmovdqa(xtmp1, ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)]);
T
tensor-tang 已提交
265
    vmovdqa(xtmp2,
T
tensor-tang 已提交
266
            ptr[reg_ptr_tmp +
267
                (YMM_FLOAT_BLOCK + 4 /*xmm float block*/) * sizeof(float)]);
T
tensor-tang 已提交
268 269
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
270
    vmovdqa(ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)], xtmp1);
T
tensor-tang 已提交
271
    // load out
T
tensor-tang 已提交
272
    vmovdqa(ymm_int, ptr[reg_ptr_tmp]);
T
tensor-tang 已提交
273 274
  }
  vmulps(ymm_dst, ymm_dst, ymm_int);
T
tensor-tang 已提交
275 276 277
  pop(reg_ptr_global);
}

T
tensor-tang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
void VActJitCode::exp_xmm(xmm_t& ymm_dst, xmm_t& ymm_src, int fx_idx,
                          int fy_idx, int mask_idx, int tmp_idx) {
  assert(ymm_src.getIdx() != ymm_dst.getIdx());  // TODO(TJ): use enfore
  // check all idx can not equal
  xmm_t ymm_fx = xmm_t(fx_idx);
  xmm_t ymm_fy = xmm_t(fy_idx);
  xmm_t ymm_mask = xmm_t(mask_idx);
  xmm_t ymm_tmp = xmm_t(tmp_idx);
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  // express exp(x) as exp(g + n*log(2))
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
  vmulps(ymm_fx, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
  vaddps(ymm_fx, ymm_fx, ymm_tmp);
  vroundps(ymm_fy, ymm_fx, 0x01);
  // if greater, substract 1
  vcmpgtps(ymm_mask, ymm_fy, ymm_fx);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vandps(ymm_mask, ymm_mask, ymm_tmp);
  vsubps(ymm_fx, ymm_fy, ymm_mask);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
  vmulps(ymm_fy, ymm_fx, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
  xmm_t ymm_z = xmm_t(ymm_mask.getIdx());
  vmulps(ymm_z, ymm_fx, ymm_tmp);
  vsubps(ymm_src, ymm_src, ymm_fy);
  vsubps(ymm_src, ymm_src, ymm_z);
  vmulps(ymm_z, ymm_src, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
  vmulps(ymm_dst, ymm_src, ymm_tmp);
  for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
       i += (YMM_FLOAT_BLOCK * sizeof(float))) {
    vmovaps(ymm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
    vaddps(ymm_dst, ymm_dst, ymm_tmp);
    vmulps(ymm_dst, ymm_dst, ymm_src);
  }
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmulps(ymm_dst, ymm_dst, ymm_z);
  vaddps(ymm_dst, ymm_dst, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  // build 2^n
  xmm_t ymm_int = ymm_fx;
  vcvttps2dq(ymm_int, ymm_fx);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
  vmovdqa(ymm_tmp, ptr[reg_ptr_global]);
  vpaddd(ymm_int, ymm_int, ymm_tmp);
  vpslld(ymm_int, ymm_int, 23);
  vmulps(ymm_dst, ymm_dst, ymm_int);
  pop(reg_ptr_global);
}

337 338 339 340
void VActJitCode::sigmoid_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                              int fy_idx, int mask_idx, int tmp_idx) {
  // y = 1 / (1 + e^-x)
  ymm_t ymm_tmp = ymm_t(tmp_idx);
T
tensor-tang 已提交
341 342 343 344 345 346 347 348 349
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MAX]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MIN]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  vxorps(ymm_tmp, ymm_tmp, ymm_tmp);
  vsubps(ymm_src, ymm_tmp, ymm_src);
350
  exp_ymm(ymm_dst, ymm_src, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
351 352 353 354 355 356
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vdivps(ymm_dst, ymm_tmp, ymm_dst);
  pop(reg_ptr_global);
}

357 358
void VActJitCode::tanh_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                           int fy_idx, int mask_idx, int tmp_idx) {
T
tensor-tang 已提交
359
  // y = 2 / (1 + e^(-2x)) - 1
360 361
  ymm_t ymm_tmp = ymm_t(tmp_idx);
  ymm_t ymm_zero = ymm_t(mask_idx);
T
tensor-tang 已提交
362 363 364 365 366 367 368
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
  vxorps(ymm_zero, ymm_zero, ymm_zero);
  vsubps(ymm_tmp, ymm_zero, ymm_tmp);
  vmulps(ymm_src, ymm_src, ymm_tmp);
369
  exp_ymm(ymm_dst, ymm_src, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
370 371 372 373 374 375 376 377 378
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
  vdivps(ymm_dst, ymm_tmp, ymm_dst);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vsubps(ymm_dst, ymm_dst, ymm_tmp);
  pop(reg_ptr_global);
}

379 380 381 382 383 384
void VActJitCode::generate() {
  xmm_t xmm_zero = xmm_t(2);
  ymm_t ymm_zero = ymm_t(2);
  if (type_ == operand_type::relu) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
385
  int offset = 0;
386
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    vmovups(ymm_src, ptr[param1 + offset]);
    switch (type_) {
      case operand_type::relu:
        relu_ymm(ymm_dst, ymm_src, ymm_zero);
        break;
      case operand_type::exp:
        exp_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::sigmoid:
        sigmoid_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::tanh:
        tanh_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::identity:
        break;
      default:
        break;
    }
    vmovups(ptr[param2 + offset], ymm_dst);
407
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
408
  }
T
tensor-tang 已提交
409
  if (type_ != operand_type::relu && type_ != operand_type::exp) {
410 411 412 413
    // TODO(TJ): remove me
    ret();
    return;
  }
414
  int rest = num_ % YMM_FLOAT_BLOCK;
415 416
  if (rest >= 4) {
    vmovups(xmm_src, ptr[param1 + offset]);
T
tensor-tang 已提交
417 418 419 420 421 422 423 424 425 426
    switch (type_) {
      case operand_type::relu:
        relu_xmm(xmm_dst, xmm_src, xmm_zero);
        break;
      case operand_type::exp:
        exp_xmm(xmm_dst, xmm_src, 2, 3, 4, 5);
        break;
      default:
        break;
    }
427 428 429 430 431
    vmovups(ptr[param2 + offset], xmm_dst);
    offset += sizeof(float) * 4;
    rest -= 4;
  }
  if (rest >= 2) {
T
tensor-tang 已提交
432 433 434 435 436 437 438 439 440 441 442
    vmovq(xmm_src, ptr[param1 + offset]);
    switch (type_) {
      case operand_type::relu:
        relu_xmm(xmm_dst, xmm_src, xmm_zero);
        break;
      case operand_type::exp:
        exp_xmm(xmm_dst, xmm_src, 2, 3, 4, 5);
        break;
      default:
        break;
    }
443 444 445 446 447
    vmovq(ptr[param2 + offset], xmm_dst);
    offset += sizeof(float) * 2;
    rest -= 2;
  }
  if (rest > 0) {
T
tensor-tang 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
    // vmovups();
    vmovss(xmm_src, ptr[param1 + offset]);

    switch (type_) {
      case operand_type::relu:
        relu_xmm(xmm_dst, xmm_src, xmm_zero);
        break;
      case operand_type::exp:
        exp_xmm(xmm_dst, xmm_src, 2, 3, 4, 5);
        break;
      default:
        break;
    }
461 462
    vmovss(ptr[param2 + offset], xmm_dst);
  }
T
tensor-tang 已提交
463 464 465
  ret();
}

466 467 468 469 470
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle