api_train.py 7.4 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
L
Luo Tao 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
"""
A very basic example for how to use current Raw SWIG API to train mnist network.

Current implementation uses Raw SWIG, which means the API call is directly \
passed to C++ side of Paddle.

The user api could be simpler and carefully designed.
"""
import random

import numpy as np
import paddle.v2 as paddle_v2
import py_paddle.swig_paddle as api
from paddle.trainer_config_helpers import *
from py_paddle import DataProviderConverter

from mnist_util import read_from_mnist


def init_parameter(network):
    assert isinstance(network, api.GradientMachine)
    for each_param in network.getParameters():
        assert isinstance(each_param, api.Parameter)
        array_size = len(each_param)
        array = np.random.uniform(-1.0, 1.0, array_size).astype('float32')
        each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array)


def generator_to_batch(generator, batch_size):
    ret_val = list()
    for each_item in generator:
        ret_val.append(each_item)
        if len(ret_val) == batch_size:
            yield ret_val
            ret_val = list()
    if len(ret_val) != 0:
        yield ret_val


class BatchPool(object):
    def __init__(self, generator, batch_size):
        self.data = list(generator)
        self.batch_size = batch_size

    def __call__(self):
        random.shuffle(self.data)
        for offset in xrange(0, len(self.data), self.batch_size):
            limit = min(offset + self.batch_size, len(self.data))
            yield self.data[offset:limit]


def input_order_converter(generator):
    for each_item in generator:
        yield each_item['pixel'], each_item['label']


def main():
    api.initPaddle("-use_gpu=false", "-trainer_count=4")  # use 4 cpu cores

    optimizer = paddle_v2.optimizer.Adam(
        learning_rate=1e-4,
        batch_size=1000,
        model_average=ModelAverage(average_window=0.5),
        regularization=L2Regularization(rate=0.5))

    # Create Local Updater. Local means not run in cluster.
    # For a cluster training, here we can change to createRemoteUpdater
    # in future.
    updater = optimizer.create_local_updater()
    assert isinstance(updater, api.ParameterUpdater)

    # define network
    images = paddle_v2.layer.data(
        name='pixel', type=paddle_v2.data_type.dense_vector(784))
    label = paddle_v2.layer.data(
        name='label', type=paddle_v2.data_type.integer_value(10))
    hidden1 = paddle_v2.layer.fc(input=images, size=200)
    hidden2 = paddle_v2.layer.fc(input=hidden1, size=200)
    inference = paddle_v2.layer.fc(input=hidden2,
                                   size=10,
                                   act=paddle_v2.activation.Softmax())
    cost = paddle_v2.layer.classification_cost(input=inference, label=label)

    # Create Simple Gradient Machine.
    model_config = paddle_v2.layer.parse_network(cost)
    m = api.GradientMachine.createFromConfigProto(model_config,
                                                  api.CREATE_MODE_NORMAL,
                                                  optimizer.enable_types())

    # This type check is not useful. Only enable type hint in IDE.
    # Such as PyCharm
    assert isinstance(m, api.GradientMachine)

    # Initialize Parameter by numpy.
    init_parameter(network=m)

    # Initialize ParameterUpdater.
    updater.init(m)

    # DataProvider Converter is a utility convert Python Object to Paddle C++
    # Input. The input format is as same as Paddle's DataProvider.
    converter = DataProviderConverter(input_types=[images.type, label.type])

    train_file = './data/raw_data/train'
    test_file = './data/raw_data/t10k'

    # start gradient machine.
    # the gradient machine must be started before invoke forward/backward.
    # not just for training, but also for inference.
    m.start()

    # evaluator can print error rate, etc. It is a C++ class.
    batch_evaluator = m.makeEvaluator()
    test_evaluator = m.makeEvaluator()

    # Get Train Data.
    # TrainData will stored in a data pool. Currently implementation is not care
    # about memory, speed. Just a very naive implementation.
    train_data_generator = input_order_converter(read_from_mnist(train_file))
    train_data = BatchPool(train_data_generator, 512)

    # outArgs is Neural Network forward result. Here is not useful, just passed
    # to gradient_machine.forward
    outArgs = api.Arguments.createArguments(0)

    for pass_id in xrange(2):  # we train 2 passes.
        updater.startPass()

        for batch_id, data_batch in enumerate(train_data()):
            # data_batch is input images.
            # here, for online learning, we could get data_batch from network.

            # Start update one batch.
            pass_type = updater.startBatch(len(data_batch))

            # Start BatchEvaluator.
            # batch_evaluator can be used between start/finish.
            batch_evaluator.start()

            # forwardBackward is a shortcut for forward and backward.
            # It is sometimes faster than invoke forward/backward separately,
            # because in GradientMachine, it may be async.
            m.forwardBackward(converter(data_batch), outArgs, pass_type)

            for each_param in m.getParameters():
                updater.update(each_param)

            # Get cost. We use numpy to calculate total cost for this batch.
            cost_vec = outArgs.getSlotValue(0)
            cost_vec = cost_vec.copyToNumpyMat()
            cost = cost_vec.sum() / len(data_batch)

            # Make evaluator works.
            m.eval(batch_evaluator)

            # Print logs.
            print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \
                cost, batch_evaluator

            batch_evaluator.finish()
            # Finish batch.
            #  * will clear gradient.
            #  * ensure all values should be updated.
            updater.finishBatch(cost)

        # testing stage. use test data set to test current network.
        updater.apply()
        test_evaluator.start()
        test_data_generator = input_order_converter(read_from_mnist(test_file))
        for data_batch in generator_to_batch(test_data_generator, 512):
            # in testing stage, only forward is needed.
            m.forward(converter(data_batch), outArgs, api.PASS_TEST)
            m.eval(test_evaluator)

        # print error rate for test data set
        print 'Pass', pass_id, ' test evaluator: ', test_evaluator
        test_evaluator.finish()
        updater.restore()

        updater.catchUpWith()
        params = m.getParameters()
        for each_param in params:
            assert isinstance(each_param, api.Parameter)
            value = each_param.getBuf(api.PARAMETER_VALUE)
            value = value.copyToNumpyArray()

            # Here, we could save parameter to every where you want
            print each_param.getName(), value

        updater.finishPass()

    m.finish()


if __name__ == '__main__':
    main()