test_image_classification_layer.py 2.9 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Q
Qiao Longfei 已提交
14 15
import unittest

16
import paddle.v2.fluid as fluid
Q
Qiao Longfei 已提交
17 18
import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.framework import Program
Q
Qiao Longfei 已提交
19 20


21
def conv_block(input, num_filter, groups, dropouts):
Q
Qiao Longfei 已提交
22 23 24 25 26 27 28 29 30
    return nets.img_conv_group(
        input=input,
        pool_size=2,
        pool_stride=2,
        conv_num_filter=[num_filter] * groups,
        conv_filter_size=3,
        conv_act='relu',
        conv_with_batchnorm=True,
        conv_batchnorm_drop_rate=dropouts,
31
        pool_type='max')
Q
Qiao Longfei 已提交
32 33 34 35


class TestLayer(unittest.TestCase):
    def test_batch_norm_layer(self):
36 37
        main_program = Program()
        startup_program = Program()
38 39 40 41 42 43
        with fluid.program_guard(main_program, startup_program):
            images = fluid.layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
            hidden1 = fluid.layers.batch_norm(input=images)
            hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu')
            fluid.layers.batch_norm(input=hidden2)
Q
Qiao Longfei 已提交
44

45
        print str(main_program)
Q
Qiao Longfei 已提交
46 47

    def test_dropout_layer(self):
48 49
        main_program = Program()
        startup_program = Program()
50 51 52 53
        with fluid.program_guard(main_program, startup_program):
            images = fluid.layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
            fluid.layers.dropout(x=images, dropout_prob=0.5)
Q
Qiao Longfei 已提交
54

55
        print str(main_program)
Q
Qiao Longfei 已提交
56 57

    def test_img_conv_group(self):
58 59
        main_program = Program()
        startup_program = Program()
Q
Qiao Longfei 已提交
60

61 62 63 64 65
        with fluid.program_guard(main_program, startup_program):
            images = fluid.layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
            conv1 = conv_block(images, 64, 2, [0.3, 0])
            conv_block(conv1, 256, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
66

67
        print str(main_program)
Q
Qiao Longfei 已提交
68

Q
Qiao Longfei 已提交
69
    def test_elementwise_add_with_act(self):
70 71
        main_program = Program()
        startup_program = Program()
72 73 74 75 76 77 78
        with fluid.program_guard(main_program, startup_program):
            image1 = fluid.layers.data(
                name='pixel1', shape=[3, 48, 48], dtype='float32')
            image2 = fluid.layers.data(
                name='pixel2', shape=[3, 48, 48], dtype='float32')
            fluid.layers.elementwise_add(x=image1, y=image2, act='relu')
        print(main_program)
Q
Qiao Longfei 已提交
79

Q
Qiao Longfei 已提交
80 81 82

if __name__ == '__main__':
    unittest.main()