lrn_op.cc 9.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lrn_op.h"
T
Tomasz Patejko 已提交
16 17 18
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
19 20 21 22 23 24

namespace paddle {
namespace operators {

using framework::Tensor;

25
template <typename T>
Q
QI JUN 已提交
26
struct LRNFunctor<platform::CPUDeviceContext, T> {
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out,
                  framework::Tensor* mid, int N, int C, int H, int W, int n,
                  T k, T alpha, T beta) {
    auto x_v = framework::EigenVector<T>::Flatten(input);

    const int start = -(n - 1) / 2;
    const int end = start + n;

    auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
    e_mid = e_mid.constant(k);

    auto e_x = framework::EigenTensor<T, 4>::From(input);
    for (int m = 0; m < N; m++) {
      for (int i = 0; i < C; i++) {
Q
qingqing01 已提交
42
        for (int c = start; c < end; c++) {
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
          int ch = i + c;
          if (ch >= 0 && ch < C) {
            auto s = e_mid.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                 Eigen::array<int, 4>({{1, 1, H, W}}));

            auto r = e_x.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                               Eigen::array<int, 4>({{1, 1, H, W}}));

            s += alpha * r.square();
          }
        }
      }
    }

    auto out_e = framework::EigenVector<T>::Flatten(*out);
    out_e = x_v * e_mid.reshape(Eigen::DSizes<int, 1>(e_mid.size())).pow(-beta);
  }
};
Q
QI JUN 已提交
61 62
template struct LRNFunctor<platform::CPUDeviceContext, float>;
template struct LRNFunctor<platform::CPUDeviceContext, double>;
63 64

template <typename T>
Q
QI JUN 已提交
65
struct LRNGradFunctor<platform::CPUDeviceContext, T> {
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& x, const framework::Tensor& out,
                  const framework::Tensor& mid, framework::Tensor* x_g,
                  const framework::Tensor& out_g, int N, int C, int H, int W,
                  int n, T alpha, T beta) {
    T ratio = -2 * alpha * beta;
    auto x_g_e = framework::EigenVector<T>::Flatten(*x_g);
    x_g_e = x_g_e.constant(0.0);

    auto e_x = framework::EigenTensor<T, 4>::From(x);
    auto e_x_g = framework::EigenTensor<T, 4>::From(*x_g);
    auto e_out = framework::EigenTensor<T, 4>::From(out);
    auto e_out_g = framework::EigenTensor<T, 4>::From(out_g);
    auto e_mid = framework::EigenTensor<T, 4>::From(mid);

    const int start = -(n - 1) / 2;
    const int end = start + n;
    for (int m = 0; m < N; m++) {
      for (int i = 0; i < C; i++) {
        auto i_x = e_x.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                             Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_x_g = e_x_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                 Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                     Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_mid = e_mid.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                 Eigen::array<int, 4>({{1, 1, H, W}}));

        i_x_g = i_mid.pow(-beta) * i_out_g;
Q
qingqing01 已提交
98
        for (int c = start; c < end; c++) {
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
          int ch = i + c;
          if (ch < 0 || ch >= C) {
            continue;
          }

          auto c_out = e_out.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                   Eigen::array<int, 4>({{1, 1, H, W}}));

          auto c_mid = e_mid.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                   Eigen::array<int, 4>({{1, 1, H, W}}));

          auto c_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                       Eigen::array<int, 4>({{1, 1, H, W}}));

          i_x_g += ratio * c_out_g * c_out * i_x / c_mid;
        }
      }
    }
  }
};
Q
QI JUN 已提交
119 120
template struct LRNGradFunctor<platform::CPUDeviceContext, float>;
template struct LRNGradFunctor<platform::CPUDeviceContext, double>;
121

122
namespace {
123 124 125
framework::OpKernelType GetExpectedLRNKernel(
    const framework::ExecutionContext& ctx) {
  framework::LibraryType library_{framework::LibraryType::kPlain};
126
#ifdef PADDLE_WITH_MKLDNN
127 128 129 130
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
  }
131 132
#endif

133 134 135 136 137 138
  std::string data_format = ctx.Attr<std::string>("data_format");
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
139
}
140
}  // namespace
141

G
gongweibao 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
class LRNOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MidOut"),
                   "MidOut(Out) of LRNOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(x_dim.size(), 4, "Input(X)'rank of LRNOp should be 4.");

    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
159
    ctx->SetOutputDim("MidOut", x_dim);
G
gongweibao 已提交
160
  }
T
Tomasz Patejko 已提交
161 162

  framework::OpKernelType GetExpectedKernelType(
163 164
      const framework::ExecutionContext& ctx) const override {
    return GetExpectedLRNKernel(ctx);
T
Tomasz Patejko 已提交
165
  }
G
gongweibao 已提交
166 167 168 169 170
};

template <typename T>
class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
171
  LRNOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
gongweibao 已提交
172
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
173 174 175
    AddInput("X",
             "(Tensor) The input of LRN operator. "
             "It must be a 4D tenor with NCHW format.");
G
gongweibao 已提交
176 177 178
    AddOutput("Out",
              "(Tensor) The output of LRN operator, which is also the 4D "
              "tensor with NCHW format.");
K
kexinzhao 已提交
179 180 181 182 183 184 185 186
    AddOutput("MidOut",
              "(Tensor) Middle result of LRN operator. It's computed in "
              "forward process and also used in backward process.");

    AddAttr<int>("n",
                 "(int default 5) "
                 "n is the \"adjacent\" kernel that maps "
                 "at the same spatial position.")
G
gongweibao 已提交
187 188 189
        .SetDefault(5)
        .GreaterThan(0);

K
kexinzhao 已提交
190 191 192
    AddAttr<T>("k",
               "(float, default 2.0) "
               "k is the bias.")
G
gongweibao 已提交
193 194 195
        .SetDefault(2.0)
        .GreaterThan(0.0);

K
kexinzhao 已提交
196 197 198
    AddAttr<T>("alpha",
               "(float, default 0.0001) "
               "alpha is the scale number.")
G
gongweibao 已提交
199 200 201
        .SetDefault(0.0001)
        .GreaterThan(0.0);

K
kexinzhao 已提交
202 203 204
    AddAttr<T>("beta",
               "(float, default 0.75) "
               "beta is the power number.")
G
gongweibao 已提交
205 206
        .SetDefault(0.75)
        .GreaterThan(0.0);
T
Tomasz Patejko 已提交
207 208 209 210 211 212 213 214 215 216
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
217 218 219 220
    AddAttr<bool>("is_test",
                  "Turns on memory optimization that optimizes away "
                  "unnecessary memory allocations. Used by MKLDNN.")
        .SetDefault(false);
G
gongweibao 已提交
221 222

    AddComment(R"DOC(
K
kexinzhao 已提交
223
Local Response Normalization Operator.
G
gongweibao 已提交
224

225 226
This operator comes from the paper:
<<ImageNet Classification with Deep Convolutional Neural Networks>>.
G
gongweibao 已提交
227

K
kexinzhao 已提交
228
The original formula is:
G
gongweibao 已提交
229

K
kexinzhao 已提交
230 231 232 233 234 235
$$
Output(i, x, y) = Input(i, x, y) / \left(
k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
(Input(j, x, y))^2
\right)^{\beta}
$$
G
gongweibao 已提交
236

K
kexinzhao 已提交
237
Function implementation:
G
gongweibao 已提交
238

K
kexinzhao 已提交
239 240 241
Inputs and outpus are in NCHW format, while input.shape.ndims() equals 4.
And dimensions 0 ~ 3 represent batch size, feature maps, rows,
and columns, respectively.
G
gongweibao 已提交
242

K
kexinzhao 已提交
243 244
Input and Output in the formula above is for each map(i) of one image, and
Input(i, x, y), Output(i, x, y) represents an element in an image.
G
gongweibao 已提交
245

K
kexinzhao 已提交
246 247 248
C is the number of feature maps of one image. n is a hyper-parameter
configured when operator is initialized. The sum in the denominator
is the sum of the same positions in the neighboring maps.
Q
QI JUN 已提交
249

K
kexinzhao 已提交
250
)DOC");
G
gongweibao 已提交
251 252 253 254 255 256 257 258 259 260
  }
};

class LRNOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
261
    PADDLE_ENFORCE(ctx->HasInput("MidOut"), "Input(MidOut) should not be null");
G
gongweibao 已提交
262 263 264 265 266 267 268
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

T
Tomasz Patejko 已提交
269
  framework::OpKernelType GetExpectedKernelType(
270 271
      const framework::ExecutionContext& ctx) const override {
    return GetExpectedLRNKernel(ctx);
T
Tomasz Patejko 已提交
272 273
  }
};
G
gongweibao 已提交
274 275 276 277 278
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(lrn, ops::LRNOp, ops::LRNOpMaker<float>, lrn_grad, ops::LRNOpGrad);
Q
QI JUN 已提交
279 280 281 282
REGISTER_OP_CPU_KERNEL(
    lrn, ops::LRNKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    lrn_grad, ops::LRNGradKernel<paddle::platform::CPUDeviceContext, float>);