dist_multi_trainer.cc 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20
#include "paddle/fluid/framework/device_worker_factory.h"
21
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
22 23 24 25 26
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

27 28
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
29
  thread_num_ = trainer_desc.thread_num();
30
  SetDataset(dataset);
D
dongdaxiang 已提交
31

32 33 34 35 36 37 38
  dump_fields_path_ = trainer_desc.dump_fields_path();
  dump_converter_ = trainer_desc.dump_converter();
  need_dump_field_ = false;
  if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
    need_dump_field_ = true;
  }
  if (need_dump_field_) {
39
    auto &file_list = dataset->GetFileList();
40 41 42 43
    if (file_list.size() == 0) {
      need_dump_field_ = false;
    }
  }
X
xujiaqi01 已提交
44 45
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
46
  dump_file_num_ = trainer_desc.dump_file_num();
47
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
48
  const std::vector<paddle::framework::DataFeed *> readers =
49
      dataset->GetReaders();
50

51 52
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
53 54 55 56 57
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
58

59 60 61 62
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
63
    workers_[i]->SetDataFeed(readers[i]);
64
    workers_[i]->Initialize(trainer_desc);
65
    workers_[i]->SetNeedDump(need_dump_field_);
66 67
  }

D
dongdaxiang 已提交
68
  VLOG(3) << "going to initialize pull dense worker";
69 70
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
71
  VLOG(3) << "initialize pull dense worker";
72
  SetDebug(trainer_desc.debug());
73 74
}

T
Thunderbrook 已提交
75
void DistMultiTrainer::DumpWork(int tid) {
76
#ifdef _LINUX
T
Thunderbrook 已提交
77 78 79 80 81
  int err_no = 0;
  std::string path = string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);

  std::shared_ptr<FILE> fp = fs_open_write(path, &err_no, dump_converter_);
82 83 84 85 86 87
  while (1) {
    std::string out_str;
    if (!queue_->Get(out_str)) {
      break;
    }
    size_t write_count =
T
Thunderbrook 已提交
88
        fwrite_unlocked(out_str.data(), 1, out_str.length(), fp.get());
89 90 91 92
    if (write_count != out_str.length()) {
      VLOG(3) << "dump text failed";
      continue;
    }
T
Thunderbrook 已提交
93
    write_count = fwrite_unlocked("\n", 1, 1, fp.get());
94 95 96 97 98 99 100 101 102 103 104 105 106
    if (write_count != 1) {
      VLOG(3) << "dump text failed";
      continue;
    }
  }
#endif
}

void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
T
Thunderbrook 已提交
107 108 109 110 111 112 113 114 115 116 117
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&DistMultiTrainer::DumpWork, this, i)));
  }
118 119 120 121
}

void DistMultiTrainer::FinalizeDumpEnv() {
  queue_->Close();
T
Thunderbrook 已提交
122 123 124
  for (auto &th : dump_thread_) {
    th.join();
  }
125 126 127
  queue_.reset();
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program,
                                      const platform::Place &place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetReaderPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  // Scope* -> thread id, it will be used in push_dense op
  for (int i = 0; i < thread_num_; ++i) {
    Scope *thread_scope = workers_[i]->GetThreadScope();
    pull_dense_worker_->SetThreadIdByScope(thread_scope, i);
  }
}

144
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
145 146 147
  if (need_dump_field_) {
    InitDumpEnv();
  }
148
  pull_dense_worker_->SetRootScope(root_scope_);
149
  pull_dense_worker_->Start();
D
dongdaxiang 已提交
150
  VLOG(3) << "init other env done.";
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

165 166 167 168
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

169
void DistMultiTrainer::Finalize() {
170
  for (auto &th : threads_) {
171 172
    th.join();
  }
173
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
174 175 176 177 178 179 180 181 182 183 184 185 186
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
187 188 189 190 191 192 193 194 195 196 197 198
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
199 200 201 202 203
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

204 205 206
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
207
  pull_dense_worker_->Stop();
208
  root_scope_->DropKids();
209 210 211 212

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
213 214
}

215 216 217 218 219 220 221 222 223
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
224 225
}  // namespace framework
}  // namespace paddle