while_op.cc 13.4 KB
Newer Older
Y
Yang Yang(Tony) 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <vector>
#include "paddle/framework/executor.h"
Y
Yang Yang(Tony) 已提交
17
#include "paddle/framework/lod_tensor_array.h"
Y
Yang Yang(Tony) 已提交
18 19
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
Y
Yang Yang(Tony) 已提交
20
#include "paddle/operators/detail/safe_ref.h"
Y
Yang Yang(Tony) 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

28
constexpr char kStepBlock[] = "sub_block";
Y
Yang Yang(Tony) 已提交
29 30 31
constexpr char kCondition[] = "Condition";
constexpr char kStepScopes[] = "StepScopes";
constexpr char kParameters[] = "X";
Y
Yang Yang(Tony) 已提交
32 33
constexpr char kParamGrads[] = "X@GRAD";
constexpr char kOutputs[] = "Out";
Y
Yang Yang(Tony) 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

    framework::Executor executor(dev_ctx);
Y
Yu Yang 已提交
49
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);

      executor.Run(*program, &current_scope, block->ID(),
                   false /*create_local_scope*/);
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
67
  WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yang Yang(Tony) 已提交
68 69 70 71 72 73 74 75 76
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(kParameters,
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
77
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
78
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
79
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
80 81 82 83 84
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
85 86
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
Y
Yang Yang(Tony) 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    framework::Executor executor(dev_ctx);
Y
Yu Yang 已提交
102
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
103 104 105 106 107
    auto *program = block->Program();

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
108 109 110 111 112 113
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
114 115
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
Y
Yang Yang(Tony) 已提交
116 117 118 119 120 121 122 123 124
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
        VLOG(10) << "Linking outside " << outside_og_name << " --> inside "
                 << inside_og_name;
125 126 127 128 129 130
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
Y
Yang Yang(Tony) 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        if (og_outside.Type().hash_code() ==
            typeid(framework::LoDTensor).hash_code()) {
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
        } else if (og_outside.Type().hash_code() ==
                   typeid(framework::LoDTensorArray).hash_code()) {
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
          VLOG(10) << outside_og_name << " size = " << outside_array.size();
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
            VLOG(10) << j << " " << outside_array[j].numel();
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
        }
      }

Y
Yang Yang(Tony) 已提交
158 159 160 161 162
      executor.Run(*program, *cur_scope_iter, block->ID(), false);

      auto &pg_names = Outputs(kParamGrads);
      auto &p_names = Inputs(kParameters);
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yang Yang(Tony) 已提交
163 164
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        if (pg_names[param_id] == framework::kEmptyVarName) {
165
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
166 167
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
168

Y
Yang Yang(Tony) 已提交
169
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
170 171 172 173 174 175 176 177 178 179 180
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
181
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
Y
Yang Yang(Tony) 已提交
182 183 184
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
185
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yang Yang(Tony) 已提交
186 187 188 189
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
190 191
                "fill_constant", framework::VariableNameMap{},
                {{"Out", {pg_names[param_id]}}}, attrs);
Y
Yang Yang(Tony) 已提交
192 193 194 195
            zero_op->Run(scope, dev_ctx);
          }
        }

Y
Yang Yang(Tony) 已提交
196
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
197
        auto sum_op = framework::OpRegistry::CreateOp(
Y
Yang Yang(Tony) 已提交
198
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
Y
Yiqun Liu 已提交
199
            {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
Y
Yang Yang(Tony) 已提交
200 201
        sum_op->Run(cur_scope, dev_ctx);
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
202 203 204 205 206 207 208 209 210 211
      }
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
212 213
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad = new framework::OpDesc();
Y
Yang Yang(Tony) 已提交
214
    grad->SetType("while_grad");
Y
Yang Yang(Tony) 已提交
215
    grad->SetInput(kParameters, Input(kParameters));
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
    auto igs = InputGrad(kParameters, /*do not drop empty gradient*/ false);
    std::unordered_set<std::string> all_outs;
    for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) {
      for (auto &oname : grad_block_[0]->Op(i)->OutputArgumentNames()) {
        all_outs.insert(oname);
      }
    }
    for (auto &each_ig : igs) {
      if (all_outs.find(each_ig) == all_outs.end()) {
        VLOG(10) << "Ignore " << each_ig;
        each_ig = framework::kEmptyVarName;
      }
    }

    grad->SetOutput(framework::GradVarName(kParameters), igs);

Y
Yang Yang(Tony) 已提交
235 236 237 238 239
    grad->SetInput(kOutputs, Output(kOutputs));

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
240
    auto *fwd_block = this->grad_block_[0]->ParentBlock();
Y
Yang Yang(Tony) 已提交
241 242 243 244 245 246 247
    {
      for (auto &p : Input(kParameters)) {
        block_ins.insert(p);
      }
      for (auto &o : Output(kOutputs)) {
        block_ins.insert(o);
      }
Y
Yang Yang(Tony) 已提交
248
    }
Y
Yang Yang(Tony) 已提交
249 250 251 252 253 254
    std::unordered_set<std::string> extra_inputs;
    for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) {
      for (auto &input_name : grad_block_[0]->Op(i)->InputArgumentNames()) {
        if (block_ins.find(input_name) != block_ins.end()) {
          continue;
        }
255 256 257 258 259 260 261

        // If the input of Op is generated by the forward block, do not make it
        // as input again.
        if (fwd_block->FindVar(input_name) != nullptr) {
          continue;
        }

Y
Yang Yang(Tony) 已提交
262 263
        extra_inputs.insert(input_name);
      }
Y
Yang Yang(Tony) 已提交
264

Y
Yang Yang(Tony) 已提交
265 266
      for (auto &output_name : grad_block_[0]->Op(i)->OutputArgumentNames()) {
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
267 268
      }
    }
Y
Yang Yang(Tony) 已提交
269 270 271 272 273 274 275

    std::vector<std::string> extra_inputs_list;
    extra_inputs_list.resize(extra_inputs.size());
    std::copy(extra_inputs.begin(), extra_inputs.end(),
              extra_inputs_list.begin());
    grad->SetInput(framework::GradVarName(kOutputs), extra_inputs_list);
    grad->SetInput(kStepScopes, Output(kStepScopes));
Y
Yang Yang(Tony) 已提交
276 277
    grad->SetAttrMap(this->Attrs());
    grad->SetBlockAttr(kStepBlock, *grad_block_[0]);
Y
Yang Yang(Tony) 已提交
278 279 280
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
    grad->SetAttr("original_output_grad", extra_inputs_list);
Y
Yang Yang(Tony) 已提交
281

Y
Yu Yang 已提交
282
    return std::unique_ptr<framework::OpDesc>(grad);
Y
Yang Yang(Tony) 已提交
283 284 285
  }
};

Y
Yang Yang(Tony) 已提交
286 287
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
288 289
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yang(Tony) 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    auto p_names = op_desc.Input(kParameters);
    auto pg_names = op_desc.Output(framework::GradVarName(kParameters));

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
      auto *g_var = block->FindVarRecursive(pg_names[i]);
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
        VLOG(5) << "Setting " << pg_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    ctx->HasInputs(kParameters);
    ctx->HasOutputs(framework::GradVarName(kParameters));
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

    auto p_names = ctx->Inputs(kParameters);
    auto pg_names = ctx->Outputs(kParamGrads);
    auto var_types = ctx->GetInputsVarType(kParameters);
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
      if (pg_names[i] == framework::kEmptyVarName) {
        continue;
      }
F
fengjiayi 已提交
323
      auto dims = ctx->GetInputsElementDim(kParameters, i);
324
      if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) {
Y
Yang Yang(Tony) 已提交
325
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
326
        dims_to_set.push_back(dims);
327
      } else if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR_ARRAY) {
Y
Yang Yang(Tony) 已提交
328 329
        // not sure how to set the dim of LOD_TENSOR_ARRAY
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
330
        dims_to_set.push_back(dims);
Y
Yang Yang(Tony) 已提交
331 332 333 334 335 336
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

Y
Yang Yang(Tony) 已提交
337 338 339 340 341 342
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
Y
Yang Yang(Tony) 已提交
343 344 345
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);