test_optimizer_ipu.py 5.2 KB
Newer Older
A
Allen Guo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#  Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest


@unittest.skipIf(not paddle.is_compiled_with_ipu(),
                 "core is not compiled with IPU")
class TestBase(IPUOpTest):
    def setUp(self):
        self.set_atol()
        self.set_data_feed()
        self.set_feed_attr()
        self.set_attrs()

    def set_atol(self):
        self.atol = 1e-6

    def set_data_feed(self):
        self.feed = {
            "image": np.random.uniform(size=[1, 3, 10, 10]).astype('float32'),
        }

    def set_feed_attr(self):
        self.feed_shape = [x.shape for x in self.feed.values()]
        self.feed_list = list(self.feed.keys())
        self.feed_dtype = [x.dtype for x in self.feed.values()]

    def set_attrs(self):
        self.attrs = {
            "optimizer": 'sgd',
            "weight_decay": 0.0,
            "loss_scaling": 1.0,
        }

    def _test_optimizer(self, run_ipu=True):
        scope = paddle.static.Scope()
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        main_prog.random_seed = self.SEED
        startup_prog.random_seed = self.SEED
        np.random.seed(self.SEED)

        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main_prog, startup_prog):
                image = paddle.static.data(
                    name='image', shape=[1, 3, 10, 10], dtype='float32')
                conv1 = paddle.static.nn.conv2d(
                    image, num_filters=3, filter_size=3, bias_attr=False)
                loss = paddle.mean(conv1)

                weight_decay = self.attrs['weight_decay']
                opt = paddle.optimizer.SGD(learning_rate=1e-1,
                                           weight_decay=weight_decay)
                if self.attrs['optimizer'] == 'adam':
                    opt = paddle.optimizer.Adam(
                        learning_rate=1e-1, weight_decay=weight_decay)
                elif self.attrs['optimizer'] == 'lamb':

                    opt = paddle.optimizer.Lamb(
                        learning_rate=1e-1, lamb_weight_decay=weight_decay)
                opt.minimize(loss)

            if run_ipu:
                place = paddle.IPUPlace()
            else:
                place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(startup_prog)

            if run_ipu:
                feed_list = [image.name]
                fetch_list = [loss.name]
                ipu_strategy = paddle.static.IpuStrategy()
                ipu_strategy.set_graph_config(is_training=True)
                ipu_strategy.loss_scaling = self.attrs["loss_scaling"]
                program = paddle.static.IpuCompiledProgram(
                    main_prog, ipu_strategy=ipu_strategy).compile(feed_list,
                                                                  fetch_list)
            else:
                program = main_prog

            result = []
            for epoch in range(100):
                loss_res = exe.run(program, feed=self.feed, fetch_list=[loss])
                result.append(loss_res)

            return np.array(result)

    def test(self):
        # cpu and ipu dimenstion mismatch, cpu:(100, 1, 1), ipu:(100, 1)
        ipu_loss = self._test_optimizer(True).flatten()
        cpu_loss = self._test_optimizer(False).flatten()

        self.assertTrue(np.allclose(ipu_loss, cpu_loss, atol=self.atol))


@unittest.skip('do not support L2 regularization')
class TestSGD(TestBase):
    def set_attrs(self):
        self.attrs = {
            "optimizer": 'sgd',
            "weight_decay": 0.1,
            "loss_scaling": 2.0,
        }


@unittest.skip('do not support L2 regularization')
class TestAdamCase1(TestBase):
    def set_attrs(self):
        self.attrs = {
            "optimizer": 'adam',
            "weight_decay": 0.1,
            "loss_scaling": 3.0,
        }


class TestAdamCase2(TestBase):
    def set_attrs(self):
        self.attrs = {
            "optimizer": 'adam',
            "weight_decay": 0.0,
            "loss_scaling": 4.0,
        }


@unittest.skip('seems cpu output wrong')
class TestLambCase1(TestBase):
    def set_attrs(self):
        self.attrs = {
            "optimizer": 'lamb',
            "weight_decay": 0.0,
            "loss_scaling": 5.0,
        }


@unittest.skip('seems cpu output wrong')
class TestLamb(TestBase):
    def set_attrs(self):
        self.attrs = {
            "optimizer": 'lamb',
            "weight_decay": 0.1,
            "loss_scaling": 6.0,
        }


if __name__ == "__main__":
    unittest.main()