compute_primitives_xpu2.h 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include "paddle/phi/common/float16.h"
17 18 19 20
#include "xpu/kernel/cluster_header.h"
#include "xpu/kernel/debug.h"
#include "xpu/kernel/math.h"

21
namespace phi {
22
namespace kps {
23 24 25 26 27 28 29 30 31 32 33 34 35
namespace details {

// kGlobalMode: block reduce, each block gets an output;
// kLocalMode: thread reduce, each thread gets an output;
enum ReduceMode { kGlobalMode, kLocalMode };

template <typename T>
class MPTypeTrait {
 public:
  using Type = T;
};

template <>
36
class MPTypeTrait<phi::dtype::float16> {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
 public:
  using Type = float;
};

static inline __device__ void sync_all() {
  __asm__ __volatile__(
      "sync_local\t\n"
      "csr_set csr3, %0\t\n"
      "sync_group csr3" ::"r"(-1));
}

#define ncores 64
template <typename T, typename OpFunc, int VecSize>
__device__ void BlockXReduce(T* data, OpFunc reducer) {
  __shared__ T sum_array[ncores * VecSize];
  int core_idx = core_id() * VecSize;
  mfence();
  sync_all();

#pragma unroll
  for (int i = 0; i < VecSize; i++) {
    mfence();
    sum_array[core_idx + i] = data[i];
    mfence();
    data[i] = 0;
  }
  sync_all();
#pragma unroll
  for (int i = 0; i < VecSize; i++) {
#pragma unroll
    for (int j = 0; j < ncores; j++) {
      mfence();
      T tmp = sum_array[j * VecSize + i];
      mfence();
      data[i] = reducer(data[i], tmp);
      mfence();
    }
  }
  sync_all();
}
#undef ncores

}  // namespace details

/**
 * @brief Perform unary calculation according to OpFunc. Shape of input and
 * output are the same.
 *
 * @template paraments
 * InT: The data type of in.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following:
 *     template <typename InT, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const InT& a) const {
 *         return ...;
 *       }
 *     };
 *
 * @param:
 * out: The register pointer of out, the size is NX * NY.
 * in: The register pointer of in, the size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT, OutT>().
 */
105 106 107 108 109
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
110
          class OpFunc>
111 112
__device__ __forceinline__ void ElementwiseUnary(OutT* out,
                                                 const InT* in,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                                                 OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; idx++) {
    out[idx] = static_cast<OutT>(compute(in[idx]));
  }
}

/**
 * @brief Binary calculation according to OpFunc. Shape of The input and output
 * are the same.
 *
 * @template paraments
 * InT: The data type of in1 and in2.
 * OutT: The data type of out.
 * NX: The number of data columns computed by each thread.
 * NY: The number of data rows computed by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following:
 *     template <typename InT>
 *     struct XxxFunctor {
 *       HOSTDEVICE InT operator()(const InT& a, const InT& b) const {
 *         return ...;
 *       }
 *     };
 *
 * @param:
 * out: The register pointer of out, the size is NX * NY.
 * in1: The register pointer of fist input, size is NX * NY.
 * in2: The register pointer of second input, size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT>().
 */
145 146 147 148 149
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
150
          class OpFunc>
151 152
__device__ __forceinline__ void ElementwiseBinary(OutT* out,
                                                  const InT* in1,
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
                                                  const InT* in2,
                                                  OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
    out[idx] = static_cast<OutT>(compute(in1[idx], in2[idx]));
  }
}

/**
 * @brief Ternary calculation according to OpFunc. Shape of input and output
 * are the same.
 *
 * @template paraments
 * InT: The data type of in1 and in2.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following
 *     template <typename InT>
 *     struct XxxFunctor {
 *       HOSTDEVICE InT operator()(const InT& a, const InT& b, const InT& c)
 * const {
 *         return ...;
 *       }
 *     };
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * in1: The register pointer of fist input, size is NX * NY.
 * in2: The register pointer of second input, size is NX * NY.
 * in3: The register pointer of third input, size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT>().
 */
188 189 190 191 192
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
193
          class OpFunc>
194 195
__device__ __forceinline__ void ElementwiseTernary(
    OutT* out, const InT* in1, const InT* in2, const InT* in3, OpFunc compute) {
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
    out[idx] = static_cast<OutT>(compute(in1[idx], in2[idx], in3[idx]));
  }
}

/**
 * @brief Multivariate calculation according to OpFunc. Shape of inputs and
 * output are the same.
 *
 * @template paraments
 * InT: The data type of in1, in2 and in3.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Arity: The size of ins
 * OpFunc: Compute functor which has an operator() as following:
 *     template <typename InT>
 *     struct XxxFunctor {
 *       HOSTDEVICE InT operator()(const InT* args) const {
 *         return ...;
 *       }
 *     };
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * ins: A pointers of array consisting of multiple inputs.
 * compute: Compute function which was declared like OpFunc<InT>().
 */
227 228 229 230 231 232
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
          int Arity,
233
          class OpFunc>
234 235
__device__ __forceinline__ void ElementwiseAny(OutT* out,
                                               InT (*ins)[NX * NY],
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                                               OpFunc compute) {
  __local__ InT args[Arity];
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
#pragma unroll
    for (int j = 0; j < Arity; ++j) {
      args[j] = ins[j][idx];
    }
    out[idx] = static_cast<OutT>(compute(args));
  }
}

/**
 * @brief Binary calculation according to OpFunc. The shape of in1 and in2 are
 * different. When in1's shape is [1, NX], in2's shape is [NY, NX], then
 * output's shape is [NY, NX].
 *
 * @template paraments
 * InT: The data type of in1 and in2.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following
 *     template <typename InT, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const InT& a, const InT& b) const {
 *         return ...;
 *       }
 *     };
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * in1: The register pointer of fist input, size is NX * 1.
 * in2: The register pointer of second input, size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT, OutT>().
 */
274 275 276 277 278
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
279
          class OpFunc>
280 281 282 283
__device__ __forceinline__ void CycleBinary(OutT* out,
                                            const InT* in1,
                                            const InT* in2,
                                            OpFunc compute) {
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
#pragma unroll
  for (int idx = 0; idx < NX; idx++) {
#pragma unroll
    for (int idy = 0; idy < NY; idy++) {
      out[idx + idy * NX] =
          static_cast<OutT>(compute(in1[idx], in2[idx + idy * NX]));
    }
  }
}

/**
 * @brief The Reduce provides collective methods for computing a parallel
 * reduction of items partitioned across a CUDA block and intra thread. When
 * ReduceMode == kLocalMode, thread reduce along nx. When ReduceMode ==
 * kGlobalMode, use shared memory to reduce between threads.
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data continuously loaded by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * ReduceFunctor: Compute functor which has an operator() as following
 *     template <typename InT>
 *     struct ReduceFunctor {
 *       HOSTDEVICE InT operator()(const InT& a, const InT& b) const {
 *         return ...;
 *       }
 *     };
 * ReduceMode: Reduce mode, can be kLocalMode, kGlobalMode.
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * in: The register pointer of in, the size is NX * NY.
 * reducer: Compute function which was declared like ReduceFunctor<InT>().
 * reduce_last_dim: if the last dim gets involved in reduction.
 */
321 322 323 324 325
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          class ReduceFunctor,
326
          details::ReduceMode Mode>
327 328
__device__ __forceinline__ void Reduce(T* out,
                                       const T* in,
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                                       ReduceFunctor reducer,
                                       bool reduce_last_dim) {
  if (Mode == kGlobalMode) {
#pragma unroll
    for (int i = 0; i < NY; ++i) {
#pragma unroll
      for (int j = 0; j < NX; ++j) {
        out[i] = reducer(out[i], in[i * NX + j]);
      }
    }
    BlockXReduce<T, OpFunc, NY>(out, reducer);
  } else {  // else  kLocalMode
#pragma unroll
    for (int i = 0; i < NY; ++i) {
#pragma unroll
      for (int j = 0; j < NX; ++j) {
        out[i] = reducer(out[i], in[i * NX + j]);
      }
    }
  }
}

351 352 353 354 355 356 357 358 359 360 361 362 363
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
          class OpFunc>
__device__ __forceinline__ void ElementwiseConstant(OutT* out, OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; idx++) {
    out[idx] = static_cast<OutT>(compute());
  }
}

364
}  // namespace kps
365
}  // namespace phi