data_feed.h 17.9 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

J
jiaqi 已提交
17 18 19 20 21
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

W
Wang Guibao 已提交
22
#include <fstream>
23
#include <future>  // NOLINT
W
Wang Guibao 已提交
24 25
#include <memory>
#include <mutex>  // NOLINT
26
#include <sstream>
W
Wang Guibao 已提交
27 28
#include <string>
#include <thread>  // NOLINT
29
#include <utility>
30
#include <vector>
W
Wang Guibao 已提交
31

J
jiaqi 已提交
32
#include "paddle/fluid/framework/archive.h"
33
#include "paddle/fluid/framework/blocking_queue.h"
J
jiaqi 已提交
34
#include "paddle/fluid/framework/channel.h"
W
Wang Guibao 已提交
35 36 37 38
#include "paddle/fluid/framework/data_feed.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable.h"
39
#include "paddle/fluid/string/string_helper.h"
W
Wang Guibao 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace framework {

// DataFeed is the base virtual class for all ohther DataFeeds.
// It is used to read files and parse the data for subsequent trainer.
// Example:
//   DataFeed* reader =
//   paddle::framework::DataFeedFactory::CreateDataFeed(data_feed_name);
//   reader->Init(data_feed_desc); // data_feed_desc is a protobuf object
//   reader->SetFileList(filelist);
//   const std::vector<std::string> & use_slot_alias =
//   reader->GetUseSlotAlias();
//   for (auto name: use_slot_alias){ // for binding memory
//     reader->AddFeedVar(scope->Var(name), name);
//   }
//   reader->Start();
//   while (reader->Next()) {
//      // trainer do something
//   }
class DataFeed {
 public:
62 63 64 65
  DataFeed() {
    mutex_for_pick_file_ = nullptr;
    file_idx_ = nullptr;
  }
W
Wang Guibao 已提交
66
  virtual ~DataFeed() {}
H
hutuxian 已提交
67
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
W
Wang Guibao 已提交
68 69 70 71 72 73 74 75
  virtual bool CheckFile(const char* filename) {
    PADDLE_THROW("This function(CheckFile) is not implemented.");
  }
  // Set filelist for DataFeed.
  // Pay attention that it must init all readers before call this function.
  // Otherwise, Init() function will init finish_set_filelist_ flag.
  virtual bool SetFileList(const std::vector<std::string>& files);
  virtual bool Start() = 0;
D
dongdaxiang 已提交
76

W
Wang Guibao 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  // The trainer calls the Next() function, and the DataFeed will load a new
  // batch to the feed_vec. The return value of this function is the batch
  // size of the current batch.
  virtual int Next() = 0;
  // Get all slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetAllSlotAlias() {
    return all_slots_;
  }
  // Get used slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetUseSlotAlias() {
    return use_slots_;
  }
  // This function is used for binding feed_vec memory
  virtual void AddFeedVar(Variable* var, const std::string& name);

H
hutuxian 已提交
92 93 94
  // This function is used for binding feed_vec memory in a given scope
  virtual void AssignFeedVar(const Scope& scope);

95
  // This function will do nothing at default
J
jiaqi 已提交
96 97 98
  virtual void SetInputChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetOutputChannel(void* channel) {}
99
  // This function will do nothing at default
J
jiaqi 已提交
100
  virtual void SetConsumeChannel(void* channel) {}
101
  // This function will do nothing at default
102
  virtual void SetThreadId(int thread_id) {}
103
  // This function will do nothing at default
104
  virtual void SetThreadNum(int thread_num) {}
105 106
  // This function will do nothing at default
  virtual void SetParseInsId(bool parse_ins_id) {}
107 108 109
  virtual void SetFileListMutex(std::mutex* mutex) {
    mutex_for_pick_file_ = mutex;
  }
110
  virtual void SetFileListIndex(size_t* file_index) { file_idx_ = file_index; }
111 112 113
  virtual void LoadIntoMemory() {
    PADDLE_THROW("This function(LoadIntoMemory) is not implemented.");
  }
114 115 116 117
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
  virtual const paddle::platform::Place& GetPlace() const { return place_; }
118

W
Wang Guibao 已提交
119 120 121 122 123 124 125 126 127 128 129 130
 protected:
  // The following three functions are used to check if it is executed in this
  // order:
  //   Init() -> SetFileList() -> Start() -> Next()
  virtual void CheckInit();
  virtual void CheckSetFileList();
  virtual void CheckStart();
  virtual void SetBatchSize(
      int batch);  // batch size will be set in Init() function
  // This function is used to pick one file from the global filelist(thread
  // safe).
  virtual bool PickOneFile(std::string* filename);
131
  virtual void CopyToFeedTensor(void* dst, const void* src, size_t size);
W
Wang Guibao 已提交
132

133 134 135
  std::vector<std::string> filelist_;
  size_t* file_idx_;
  std::mutex* mutex_for_pick_file_;
W
Wang Guibao 已提交
136 137 138 139 140 141 142 143 144 145

  // the alias of used slots, and its order is determined by
  // data_feed_desc(proto object)
  std::vector<std::string> use_slots_;
  std::vector<bool> use_slots_is_dense_;

  // the alias of all slots, and its order is determined by data_feed_desc(proto
  // object)
  std::vector<std::string> all_slots_;
  std::vector<std::string> all_slots_type_;
146
  std::vector<std::vector<int>> use_slots_shape_;
147 148
  std::vector<int> inductive_shape_index_;
  std::vector<int> total_dims_without_inductive_;
H
hutuxian 已提交
149 150
  // For the inductive shape passed within data
  std::vector<std::vector<int>> multi_inductive_shape_index_;
W
Wang Guibao 已提交
151 152 153 154
  std::vector<int>
      use_slots_index_;  // -1: not used; >=0: the index of use_slots_

  // The data read by DataFeed will be stored here
155
  std::vector<LoDTensor*> feed_vec_;
W
Wang Guibao 已提交
156 157 158 159 160 161 162

  // the batch size defined by user
  int default_batch_size_;
  // current batch size
  int batch_size_;

  bool finish_init_;
163
  bool finish_set_filelist_;
W
Wang Guibao 已提交
164
  bool finish_start_;
165
  std::string pipe_command_;
166
  platform::Place place_;
W
Wang Guibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
};

// PrivateQueueDataFeed is the base virtual class for ohther DataFeeds.
// It use a read-thread to read file and parse data to a private-queue
// (thread level), and get data from this queue when trainer call Next().
template <typename T>
class PrivateQueueDataFeed : public DataFeed {
 public:
  PrivateQueueDataFeed() {}
  virtual ~PrivateQueueDataFeed() {}
  virtual bool Start();
  virtual int Next();

 protected:
  // The thread implementation function for reading file and parse.
  virtual void ReadThread();
  // This function is used to set private-queue size, and the most
  // efficient when the queue size is close to the batch size.
  virtual void SetQueueSize(int queue_size);
  // The reading and parsing method called in the ReadThread.
  virtual bool ParseOneInstance(T* instance) = 0;
D
dongdaxiang 已提交
188
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
W
Wang Guibao 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202
  // This function is used to put instance to vec_ins
  virtual void AddInstanceToInsVec(T* vec_ins, const T& instance,
                                   int index) = 0;
  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec(const T& ins_vec) = 0;

  // The thread for read files
  std::thread read_thread_;
  // using ifstream one line and one line parse is faster
  // than using fread one buffer and one buffer parse.
  //   for a 601M real data:
  //     ifstream one line and one line parse: 6034 ms
  //     fread one buffer and one buffer parse: 7097 ms
  std::ifstream file_;
D
dongdaxiang 已提交
203
  std::shared_ptr<FILE> fp_;
W
Wang Guibao 已提交
204
  size_t queue_size_;
205
  string::LineFileReader reader_;
W
Wang Guibao 已提交
206
  // The queue for store parsed data
207
  std::shared_ptr<paddle::framework::ChannelObject<T>> queue_;
W
Wang Guibao 已提交
208 209
};

210
template <typename T>
J
jiaqi 已提交
211
class InMemoryDataFeed : public DataFeed {
212 213 214
 public:
  InMemoryDataFeed();
  virtual ~InMemoryDataFeed() {}
H
hutuxian 已提交
215
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
216 217
  virtual bool Start();
  virtual int Next();
J
jiaqi 已提交
218 219 220
  virtual void SetInputChannel(void* channel);
  virtual void SetOutputChannel(void* channel);
  virtual void SetConsumeChannel(void* channel);
221 222
  virtual void SetThreadId(int thread_id);
  virtual void SetThreadNum(int thread_num);
223
  virtual void SetParseInsId(bool parse_ins_id);
224
  virtual void LoadIntoMemory();
X
xujiaqi01 已提交
225

226 227 228
 protected:
  virtual bool ParseOneInstance(T* instance) = 0;
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
J
jiaqi 已提交
229
  virtual void PutToFeedVec(const std::vector<T>& ins_vec) = 0;
230

231 232
  int thread_id_;
  int thread_num_;
233
  bool parse_ins_id_;
J
jiaqi 已提交
234 235 236 237 238
  std::ifstream file_;
  std::shared_ptr<FILE> fp_;
  paddle::framework::ChannelObject<T>* input_channel_;
  paddle::framework::ChannelObject<T>* output_channel_;
  paddle::framework::ChannelObject<T>* consume_channel_;
239 240
};

W
Wang Guibao 已提交
241 242 243 244 245
// This class define the data type of instance(ins_vec) in MultiSlotDataFeed
class MultiSlotType {
 public:
  MultiSlotType() {}
  ~MultiSlotType() {}
H
hutuxian 已提交
246
  void Init(const std::string& type, size_t reserved_size = 0) {
W
Wang Guibao 已提交
247 248 249
    CheckType(type);
    if (type_[0] == 'f') {
      float_feasign_.clear();
H
hutuxian 已提交
250 251 252
      if (reserved_size) {
        float_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
253 254
    } else if (type_[0] == 'u') {
      uint64_feasign_.clear();
H
hutuxian 已提交
255 256 257
      if (reserved_size) {
        uint64_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
258 259 260
    }
    type_ = type;
  }
H
hutuxian 已提交
261 262 263 264
  void InitOffset(size_t max_batch_size = 0) {
    if (max_batch_size > 0) {
      offset_.reserve(max_batch_size + 1);
    }
W
Wang Guibao 已提交
265 266 267 268 269 270
    offset_.resize(1);
    // LoDTensor' lod is counted from 0, the size of lod
    // is one size larger than the size of data.
    offset_[0] = 0;
  }
  const std::vector<size_t>& GetOffset() const { return offset_; }
271
  std::vector<size_t>& MutableOffset() { return offset_; }
W
Wang Guibao 已提交
272 273 274 275 276 277 278 279
  void AddValue(const float v) {
    CheckFloat();
    float_feasign_.push_back(v);
  }
  void AddValue(const uint64_t v) {
    CheckUint64();
    uint64_feasign_.push_back(v);
  }
H
hutuxian 已提交
280 281 282 283 284 285 286 287 288 289
  void CopyValues(const float* input, size_t size) {
    CheckFloat();
    float_feasign_.resize(size);
    memcpy(float_feasign_.data(), input, size * sizeof(float));
  }
  void CopyValues(const uint64_t* input, size_t size) {
    CheckUint64();
    uint64_feasign_.resize(size);
    memcpy(uint64_feasign_.data(), input, size * sizeof(uint64_t));
  }
W
Wang Guibao 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302
  void AddIns(const MultiSlotType& ins) {
    if (ins.GetType()[0] == 'f') {  // float
      CheckFloat();
      auto& vec = ins.GetFloatData();
      offset_.push_back(offset_.back() + vec.size());
      float_feasign_.insert(float_feasign_.end(), vec.begin(), vec.end());
    } else if (ins.GetType()[0] == 'u') {  // uint64
      CheckUint64();
      auto& vec = ins.GetUint64Data();
      offset_.push_back(offset_.back() + vec.size());
      uint64_feasign_.insert(uint64_feasign_.end(), vec.begin(), vec.end());
    }
  }
H
hutuxian 已提交
303 304 305 306 307 308 309 310 311 312
  void AppendValues(const uint64_t* input, size_t size) {
    CheckUint64();
    offset_.push_back(offset_.back() + size);
    uint64_feasign_.insert(uint64_feasign_.end(), input, input + size);
  }
  void AppendValues(const float* input, size_t size) {
    CheckFloat();
    offset_.push_back(offset_.back() + size);
    float_feasign_.insert(float_feasign_.end(), input, input + size);
  }
W
Wang Guibao 已提交
313
  const std::vector<float>& GetFloatData() const { return float_feasign_; }
314
  std::vector<float>& MutableFloatData() { return float_feasign_; }
W
Wang Guibao 已提交
315
  const std::vector<uint64_t>& GetUint64Data() const { return uint64_feasign_; }
316
  std::vector<uint64_t>& MutableUint64Data() { return uint64_feasign_; }
W
Wang Guibao 已提交
317
  const std::string& GetType() const { return type_; }
H
hutuxian 已提交
318
  size_t GetBatchSize() { return offset_.size() - 1; }
319
  std::string& MutableType() { return type_; }
W
Wang Guibao 已提交
320

X
xujiaqi01 已提交
321 322
  std::string DebugString() {
    std::stringstream ss;
323 324
    ss << "\ntype: " << type_ << "\n";
    ss << "offset: ";
X
xujiaqi01 已提交
325 326 327 328
    ss << "[";
    for (const size_t& i : offset_) {
      ss << offset_[i] << ",";
    }
329
    ss << "]\ndata: [";
X
xujiaqi01 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342
    if (type_[0] == 'f') {
      for (const float& i : float_feasign_) {
        ss << i << ",";
      }
    } else {
      for (const uint64_t& i : uint64_feasign_) {
        ss << i << ",";
      }
    }
    ss << "]\n";
    return ss.str();
  }

W
Wang Guibao 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
 private:
  void CheckType(const std::string& type) const {
    PADDLE_ENFORCE((type == "uint64") || (type == "float"),
                   "There is no this type<%s>.", type);
  }
  void CheckFloat() const {
    PADDLE_ENFORCE(type_[0] == 'f', "Add %s value to float slot.", type_);
  }
  void CheckUint64() const {
    PADDLE_ENFORCE(type_[0] == 'u', "Add %s value to uint64 slot.", type_);
  }
  std::vector<float> float_feasign_;
  std::vector<uint64_t> uint64_feasign_;
  std::string type_;
  std::vector<size_t> offset_;
};

J
jiaqi 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const MultiSlotType& ins) {
  ar << ins.GetType();
#ifdef _LINUX
  ar << ins.GetOffset();
#else
  const auto& offset = ins.GetOffset();
  ar << (uint64_t)offset.size();
  for (const size_t& x : offset) {
    ar << (const uint64_t)x;
  }
#endif
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           MultiSlotType& ins) {
  ar >> ins.MutableType();
#ifdef _LINUX
  ar >> ins.MutableOffset();
#else
  auto& offset = ins.MutableOffset();
  offset.resize(ar.template Get<uint64_t>());
  for (size_t& x : offset) {
    uint64_t t;
    ar >> t;
    x = (size_t)t;
  }
#endif
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
  return ar;
}

union FeatureKey {
  uint64_t uint64_feasign_;
  float float_feasign_;
};

struct FeatureItem {
  FeatureItem() {}
  FeatureItem(FeatureKey sign, uint16_t slot) {
    this->sign() = sign;
    this->slot() = slot;
  }
  FeatureKey& sign() { return *(reinterpret_cast<FeatureKey*>(sign_buffer())); }
  const FeatureKey& sign() const {
    const FeatureKey* ret = reinterpret_cast<FeatureKey*>(sign_buffer());
    return *ret;
  }
  uint16_t& slot() { return slot_; }
  const uint16_t& slot() const { return slot_; }

 private:
  char* sign_buffer() const { return const_cast<char*>(sign_); }
  char sign_[sizeof(FeatureKey)];
  uint16_t slot_;
};

// sizeof Record is much less than std::vector<MultiSlotType>
struct Record {
  std::vector<FeatureItem> uint64_feasigns_;
  std::vector<FeatureItem> float_feasigns_;
  std::string ins_id_;
};

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const FeatureKey& fk) {
  ar << fk.uint64_feasign_;
  ar << fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           FeatureKey& fk) {
  ar >> fk.uint64_feasign_;
  ar >> fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const FeatureItem& fi) {
  ar << fi.sign();
  ar << fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           FeatureItem& fi) {
  ar >> fi.sign();
  ar >> fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const Record& r) {
  ar << r.uint64_feasigns_;
  ar << r.float_feasigns_;
  ar << r.ins_id_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           Record& r) {
  ar >> r.uint64_feasigns_;
  ar >> r.float_feasigns_;
  ar >> r.ins_id_;
  return ar;
}

W
Wang Guibao 已提交
480 481 482 483 484 485 486 487
// This DataFeed is used to feed multi-slot type data.
// The format of multi-slot type data:
//   [n feasign_0 feasign_1 ... feasign_n]*
class MultiSlotDataFeed
    : public PrivateQueueDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotDataFeed() {}
  virtual ~MultiSlotDataFeed() {}
H
hutuxian 已提交
488
  virtual void Init(const DataFeedDesc& data_feed_desc);
W
Wang Guibao 已提交
489 490 491
  virtual bool CheckFile(const char* filename);

 protected:
D
dongdaxiang 已提交
492
  virtual void ReadThread();
W
Wang Guibao 已提交
493 494 495 496
  virtual void AddInstanceToInsVec(std::vector<MultiSlotType>* vec_ins,
                                   const std::vector<MultiSlotType>& instance,
                                   int index);
  virtual bool ParseOneInstance(std::vector<MultiSlotType>* instance);
D
dongdaxiang 已提交
497
  virtual bool ParseOneInstanceFromPipe(std::vector<MultiSlotType>* instance);
W
Wang Guibao 已提交
498 499
  virtual void PutToFeedVec(const std::vector<MultiSlotType>& ins_vec);
};
500

J
jiaqi 已提交
501
class MultiSlotInMemoryDataFeed : public InMemoryDataFeed<Record> {
502 503 504
 public:
  MultiSlotInMemoryDataFeed() {}
  virtual ~MultiSlotInMemoryDataFeed() {}
H
hutuxian 已提交
505
  virtual void Init(const DataFeedDesc& data_feed_desc);
506

507
 protected:
J
jiaqi 已提交
508 509 510
  virtual bool ParseOneInstance(Record* instance);
  virtual bool ParseOneInstanceFromPipe(Record* instance);
  virtual void PutToFeedVec(const std::vector<Record>& ins_vec);
511 512
};

H
hutuxian 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
class PrivateInstantDataFeed : public DataFeed {
 public:
  PrivateInstantDataFeed() {}
  virtual ~PrivateInstantDataFeed() {}
  void Init(const DataFeedDesc& data_feed_desc) override;
  bool Start() override { return true; }
  int Next() override;

 protected:
  // The batched data buffer
  std::vector<MultiSlotType> ins_vec_;

  // This function is used to preprocess with a given filename, e.g. open it or
  // mmap
  virtual bool Preprocess(const std::string& filename) = 0;

  // This function is used to postprocess system resource such as closing file
  // NOTICE: Ensure that it is safe to call before Preprocess
  virtual bool Postprocess() = 0;

  // The reading and parsing method.
  virtual bool ParseOneMiniBatch() = 0;

  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec();
};

class MultiSlotFileInstantDataFeed
    : public PrivateInstantDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotFileInstantDataFeed() {}
  virtual ~MultiSlotFileInstantDataFeed() {}

 protected:
  int fd_{-1};
  char* buffer_{nullptr};
  size_t end_{0};
  size_t offset_{0};

  bool Preprocess(const std::string& filename) override;

  bool Postprocess() override;

  bool ParseOneMiniBatch() override;
};
#endif

W
Wang Guibao 已提交
562 563
}  // namespace framework
}  // namespace paddle