backward.yaml 73.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
- backward_api : abs_double_grad
  forward : abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_double_grad
  data_transform:
    skip_transform : grad_x_grad

13 14 15 16
- backward_api : abs_grad
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
17
  infer_meta :
18
    func : UnchangedInferMeta
19
    param : [x]
20
  kernel :
21
    func : abs_grad
22 23
  data_transform:
    skip_transform : out_grad
24
  backward : abs_double_grad
25

26 27 28 29
- backward_api : acos_grad
  forward : acos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
30
  infer_meta :
31 32
    func : UnchangedInferMeta
    param : [x]
33
  kernel :
34
    func : acos_grad
P
pangyoki 已提交
35
  inplace : (out_grad -> x_grad)
36

37 38 39
- backward_api : acosh_grad
  forward : acosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
40
  output : Tensor(x_grad)
41 42 43 44 45
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : acosh_grad
P
pangyoki 已提交
46
  inplace : (out_grad -> x_grad)
47

48 49 50 51 52 53 54 55 56 57 58 59
- backward_api : add_double_grad
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : add_triple_grad

H
hong 已提交
60 61
- backward_api : add_grad
  forward : add (Tensor x, Tensor y) -> Tensor(out)
H
hong 已提交
62
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
H
hong 已提交
63 64 65 66 67 68
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
69
  no_need_buffer : x, y
70
  backward : add_double_grad
71
  inplace : (out_grad -> x_grad)
H
hong 已提交
72

73 74 75
- backward_api : add_n_grad
  forward : add_n (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
76
  output : Tensor[](x_grad){x.size()}
77
  invoke : add_n_grad_impl(x, out_grad, x_grad)
78 79
  no_need_buffer : x

80 81 82 83 84 85 86 87 88 89
- backward_api : add_triple_grad
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad

90
- backward_api : addmm_grad
H
hong 已提交
91
  forward : addmm (Tensor input, Tensor x, Tensor y, float alpha, float beta) -> Tensor(out)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta)
  output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [input, x, y]
  kernel :
    func : addmm_grad

- backward_api : argsort_grad
  forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), Tensor(indices)
  args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : argsort_grad
H
hong 已提交
109
  no_need_buffer : x
110 111 112 113 114 115 116 117 118 119

- backward_api : asin_grad
  forward : asin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asin_grad
P
pangyoki 已提交
120
  inplace : (out_grad -> x_grad)
121 122 123 124 125 126 127 128 129 130

- backward_api : asinh_grad
  forward : asinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asinh_grad
P
pangyoki 已提交
131
  inplace : (out_grad -> x_grad)
132

C
chentianyu03 已提交
133 134 135 136 137 138
- backward_api : assign_grad
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
Z
zyfncg 已提交
139 140
  kernel :
    func : assign
P
pangyoki 已提交
141
  inplace : (out_grad -> x_grad)
Z
zyfncg 已提交
142 143 144 145 146 147 148

- backward_api : assign_out__grad
  forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
C
chentianyu03 已提交
149
  kernel :
150
    func : assign
P
pangyoki 已提交
151
  inplace : (out_grad -> x_grad)
C
chentianyu03 已提交
152

153
- backward_api : atan2_grad
154
  forward : atan2 (Tensor x, Tensor y) -> Tensor(out)
155
  args : (Tensor x, Tensor y, Tensor out_grad)
H
hong 已提交
156 157 158 159 160
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
161
    func : atan2_grad
H
hong 已提交
162

163 164 165 166 167 168 169 170 171
- backward_api : atan_grad
  forward : atan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atan_grad
P
pangyoki 已提交
172
  inplace : (out_grad -> x_grad)
173 174 175 176 177 178 179 180 181 182

- backward_api : atanh_grad
  forward : atanh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atanh_grad
P
pangyoki 已提交
183
  inplace : (out_grad -> x_grad)
184

185 186 187 188 189 190 191 192 193 194 195 196
- backward_api : batch_norm_double_grad
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
    func : batch_norm_grad_grad
    data_type : x
  optional : out_mean, out_variance

H
hong 已提交
197 198 199 200 201 202 203 204 205 206 207
- backward_api : batch_norm_grad
  forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
208
  backward : batch_norm_double_grad
H
hong 已提交
209

210 211 212 213 214 215 216 217 218
- backward_api : bce_loss_grad
  forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : bce_loss_grad
P
pangyoki 已提交
219
  inplace : (out_grad -> input_grad)
220 221 222 223 224 225 226 227 228 229

- backward_api : brelu_grad
  forward : brelu (Tensor x, float t_min, float t_max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float t_min, float t_max)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : brelu_grad
P
pangyoki 已提交
230
  inplace : (out_grad -> x_grad)
231 232 233 234 235 236 237 238 239 240 241

- backward_api : cast_grad
  forward : cast (Tensor x, DataType out_dtype) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cast_grad
    data_type : out_grad
W
wanghuancoder 已提交
242
  no_need_buffer : x
243

244 245 246 247 248 249 250 251 252
- backward_api : ceil_grad
  forward : ceil(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : ceil_grad
P
pangyoki 已提交
253
  inplace : (out_grad -> x_grad)
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
- backward_api : celu_double_grad
  forward : celu_grad(Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : celu_double_grad

- backward_api : celu_grad
  forward : celu(Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : celu_grad
  backward : celu_double_grad
P
pangyoki 已提交
275
  inplace : (out_grad -> x_grad)
276

277 278 279 280 281 282 283 284 285 286 287
- backward_api : cholesky_grad
  forward : cholesky (Tensor x, bool upper) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, bool upper)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : cholesky_grad

- backward_api : cholesky_solve_grad
288
  forward : cholesky_solve (Tensor x, Tensor y, bool upper) -> Tensor(out)
289
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper)
H
hong 已提交
290 291 292 293 294
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
295 296
    func : cholesky_solve_grad

297 298 299 300 301 302 303 304 305 306
- backward_api : clip_double_grad
  forward : clip_grad (Tensor x, Tensor grad_out, Scalar min = 0., Scalar max = 0.) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad

C
chentianyu03 已提交
307 308 309 310 311 312 313 314 315
- backward_api : clip_grad
  forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad
316
  backward : clip_double_grad
P
pangyoki 已提交
317
  inplace : (out_grad -> x_grad)
318 319 320 321 322 323 324 325 326 327

- backward_api : concat_double_grad
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : ConcatInferMeta
    param : [grad_x_grad, axis]
  kernel :
    func : concat
C
chentianyu03 已提交
328

329 330 331
- backward_api : concat_grad
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
332 333 334 335 336 337
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
H
hong 已提交
338
  no_need_buffer : x
339
  backward : concat_double_grad
340

H
hong 已提交
341 342 343 344 345 346 347 348 349 350
- backward_api : conj_grad
  forward : conj (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : conj

H
hong 已提交
351 352 353 354
- backward_api : conv2d_grad
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad)
355
  invoke : conv2d_grad_impl(input, filter, out_grad,  strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search, input_grad, filter_grad)
356 357 358 359 360 361 362 363 364 365 366
  backward : conv2d_grad_grad

- backward_api : conv2d_grad_grad
  forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv2d_grad_grad
367
    use_gpudnn : true
368
  optional : grad_input_grad, grad_filter_grad
H
hong 已提交
369

C
chentianyu03 已提交
370 371 372 373 374 375 376 377 378 379
- backward_api : conv2d_transpose_double_grad
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
    func : conv2d_transpose_grad_grad
    use_gpudnn : true

F
From00 已提交
380 381 382 383 384 385
- backward_api : conv2d_transpose_grad
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
386
  kernel :
F
From00 已提交
387
    func : conv2d_transpose_grad
388
    use_gpudnn : true
C
chentianyu03 已提交
389
  backward : conv2d_transpose_double_grad
F
From00 已提交
390 391 392 393 394 395 396 397 398

- backward_api : conv3d_transpose_grad
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad
399
    use_gpudnn : true
F
From00 已提交
400

401 402 403 404 405 406 407 408 409
- backward_api : cos_grad
  forward : cos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cos_grad
P
pangyoki 已提交
410
  inplace : (out_grad -> x_grad)
411 412 413 414 415 416 417 418 419 420

- backward_api : cosh_grad
  forward : cosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cosh_grad
P
pangyoki 已提交
421
  inplace : (out_grad -> x_grad)
422

423 424 425 426 427 428 429 430 431
- backward_api : cross_entropy_with_softmax_grad
  forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss)
  args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis)
  output : Tensor(input_grad)
  infer_meta :
    func : CrossEntropyWithSoftmaxGradInferMeta
  kernel :
    func : cross_entropy_with_softmax_grad
    data_type : softmax
432
  inplace : (softmax -> input_grad)
433

434 435 436 437 438 439 440 441 442 443
- backward_api : cross_grad
  forward : cross (Tensor x, Tensor y, int axis = 9) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : cross_grad

444 445 446 447 448 449 450 451 452 453
- backward_api : cumprod_grad
  forward : cumprod (Tensor x, int dim) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumprod_grad

454 455 456 457 458 459 460 461 462
- backward_api : cumsum_grad
  forward : cumsum(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  args : (Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse)
  output : Tensor(x_grad)
  invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse)

463 464 465 466 467 468 469 470
- backward_api : deformable_conv_grad
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
471
    data_type : x
472 473
  optional : mask

F
From00 已提交
474 475 476 477 478 479 480 481 482
- backward_api : depthwise_conv2d_transpose_grad
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : depthwise_conv2d_transpose_grad

C
chentianyu03 已提交
483 484 485 486 487 488 489 490
- backward_api : det_grad
  forward : det (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
491
    func : determinant_grad
C
chentianyu03 已提交
492

493 494 495 496 497 498 499 500 501
- backward_api : diagonal_grad
  forward : diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : diagonal_grad
H
hong 已提交
502
  no_need_buffer : x
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

- backward_api : digamma_grad
  forward : digamma (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : digamma_grad

- backward_api : dist_grad
  forward : dist (Tensor x, Tensor y, float p) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, float p)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : dist_grad
H
hong 已提交
523

524 525 526 527 528 529 530 531 532 533 534 535
- backward_api : divide_double_grad
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad

H
hong 已提交
536 537
- backward_api : divide_grad
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
0
0x45f 已提交
538
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
H
hong 已提交
539 540 541 542 543 544
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
545
  backward : divide_double_grad
H
hong 已提交
546

H
hong 已提交
547 548 549 550 551 552 553 554 555 556
- backward_api : dropout_grad
  forward : dropout (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, float p, bool is_test, str mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad

557 558 559 560 561 562 563 564 565
- backward_api : eigh_grad
  forward : eigh (Tensor x, str uplo) -> Tensor(out_w), Tensor(out_v)
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eigh_grad
566 567 568
    data_type : out_v
  data_transform:
    skip_transform : out_w, out_w_grad
H
hong 已提交
569

570
- backward_api : einsum_grad
571 572
  forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache)
  args : (Tensor[] x, Tensor[] inner_cache, Tensor out_grad, str equation)
573 574 575 576 577 578 579
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : einsum_grad

580 581 582 583 584 585 586 587 588 589
- backward_api : elementwise_pow_grad
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : elementwise_pow_grad

590 591 592 593 594 595 596 597 598 599
- backward_api : elu_double_grad
  forward : elu_grad (Tensor x, Tensor out, Tensor grad_out, float alpha)-> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : elu_double_grad

600 601 602 603 604 605 606 607 608
- backward_api : elu_grad
  forward : elu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : elu_grad
609
  backward : elu_double_grad
P
pangyoki 已提交
610
  inplace : (out_grad -> x_grad)
611 612 613 614 615 616 617 618 619 620 621 622 623

- backward_api : erf_grad
  forward : erf (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : erf_grad
    data_type : out_grad

- backward_api : erfinv_grad
624
  forward : erfinv (Tensor x) -> Tensor(out)
625 626 627 628 629 630 631 632
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : erfinv_grad

C
chentianyu03 已提交
633 634 635 636 637 638 639 640 641
- backward_api : exp_grad
  forward : exp (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : exp_grad
P
pangyoki 已提交
642
  inplace : (out_grad -> x_grad)
C
chentianyu03 已提交
643

H
hong 已提交
644 645 646 647 648 649 650 651 652
- backward_api : expand_as_grad
  forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] target_shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_as_grad
H
hong 已提交
653
  no_need_buffer : x
654

655 656 657 658 659 660 661 662 663
- backward_api : expand_double_grad
  forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray shape)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : ExpandInferMeta
  kernel :
    func : expand

H
hong 已提交
664 665 666 667 668 669 670 671 672
- backward_api : expand_grad
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad
W
wanghuancoder 已提交
673
  no_need_buffer : x
674
  backward : expand_double_grad
H
hong 已提交
675

676 677 678 679 680 681 682 683 684
- backward_api : expm1_grad
  forward : expm1 (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : expm1_grad
P
pangyoki 已提交
685
  inplace : (out_grad -> x_grad)
686

687 688 689 690 691 692 693 694 695 696 697 698
- backward_api : flatten_grad
  forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func :  KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : flatten_grad
    data_type: out_grad
    backend: out_grad
    layout: out_grad
699
  inplace : (out_grad -> x_grad)
700

H
hong 已提交
701 702 703 704 705 706 707 708 709 710
- backward_api : flip_grad
  forward : flip (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : flip

711 712 713 714 715 716 717 718 719
- backward_api : floor_grad
  forward : floor(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : floor_grad
P
pangyoki 已提交
720
  inplace : (out_grad -> x_grad)
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

- backward_api : fmax_grad
  forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

- backward_api : fmin_grad
  forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

F
From00 已提交
742 743 744 745 746 747 748 749 750 751
- backward_api : frobenius_norm_grad
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

752 753 754 755 756 757 758 759 760 761
- backward_api : gather_grad
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
H
hong 已提交
762
  no_need_buffer : x
763

764 765 766 767 768 769 770 771 772
- backward_api : gather_nd_grad
  forward : gather_nd (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : gather_nd_grad
H
hong 已提交
773
  no_need_buffer : x
774

775 776 777 778 779 780 781 782 783 784
- backward_api : gelu_grad
  forward : gelu(Tensor x,  bool approximate) -> Tensor(out)
  args : (Tensor x, Tensor out_grad,  bool approximate)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : gelu_grad

785 786 787 788 789 790 791 792 793
- backward_api : graph_send_recv_grad
  forward : graph_send_recv (Tensor x, Tensor src_index, Tensor dst_index, str pool_type = "SUM", int64_t out_size = 0) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str pool_type = "SUM")
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : graph_send_recv_grad
794
    data_type : out_grad
795 796
  optional: out, dst_count

H
hong 已提交
797 798 799 800 801 802 803 804 805 806
- backward_api : gumbel_softmax_grad
  forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GumbelSoftmaxGradInferMeta
    param : [out, out_grad, axis]
  kernel :
    func : gumbel_softmax_grad

807 808 809 810 811 812 813 814 815
- backward_api : hard_shrink_grad
  forward : hard_shrink (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_shrink_grad
P
pangyoki 已提交
816
  inplace : (out_grad -> x_grad)
817 818 819 820 821 822 823 824 825 826

- backward_api : hard_sigmoid_grad
  forward : hard_sigmoid (Tensor x, float slope, float offset) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float slope, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : hard_sigmoid_grad
P
pangyoki 已提交
827
  inplace : (out_grad -> x_grad)
828

829 830 831 832 833 834 835 836 837
- backward_api : hard_swish_grad
  forward : hard_swish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_swish_grad
P
pangyoki 已提交
838
  inplace : (out_grad -> x_grad)
839

840 841 842 843 844 845 846 847 848 849
- backward_api : huber_loss_grad
  forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
  args : (Tensor residual, Tensor out_grad, float delta)
  output : Tensor(input_grad), Tensor(label_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [residual, residual]
  kernel :
    func : huber_loss_grad

Z
zyfncg 已提交
850 851 852 853
- backward_api : imag_grad
  forward : imag (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
854
  invoke : imag_grad_impl(out_grad, x_grad)
Z
zyfncg 已提交
855

856 857 858 859 860 861 862 863 864 865
- backward_api : index_sample_grad
  forward : index_sample (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_sample_grad
    data_type : out_grad
H
hong 已提交
866
  no_need_buffer : x
867

F
From00 已提交
868 869 870 871 872 873 874 875 876 877
- backward_api : index_select_grad
  forward : index_select(Tensor x, Tensor index,  int dim) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad,  int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_select_grad
    data_type : x
H
hong 已提交
878
  no_need_buffer : x
F
From00 已提交
879

880 881 882 883 884 885 886 887 888
- backward_api : kldiv_loss_grad
  forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kldiv_loss_grad
H
hong 已提交
889
  no_need_buffer : x
890

891 892 893 894 895 896 897 898 899 900 901
- backward_api : kron_grad
  forward : kron (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : kron_grad
    data_type : out_grad

902 903 904 905 906 907 908 909 910 911
- backward_api : kthvalue_grad
  forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kthvalue_grad

912 913 914 915 916 917 918 919 920 921
- backward_api : label_smooth_grad
  forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out)
  args : (Tensor out_grad, float epsilon)
  output : Tensor(label_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : label_smooth_grad

H
hong 已提交
922 923 924 925 926 927 928 929 930 931
- backward_api : layer_norm_grad
  forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis, bool is_test) -> Tensor(out), Tensor(mean), Tensor(variance)
  args : (Tensor x,  Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis, bool is_test)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : LayerNormGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : layer_norm_grad
    data_type : out_grad
W
wanghuancoder 已提交
932
  no_need_buffer : bias
H
hong 已提交
933 934
  optional : scale, bias

935 936 937 938 939 940 941 942 943 944
- backward_api : leaky_relu_double_grad
  forward : leaky_relu_grad (Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, float alpha)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_x_grad]
  kernel :
    func : leaky_relu_double_grad

945 946 947 948 949 950 951 952 953
- backward_api : leaky_relu_grad
  forward : leaky_relu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : leaky_relu_grad
954
  backward : leaky_relu_double_grad
P
pangyoki 已提交
955
  inplace : (out_grad -> x_grad)
956 957

- backward_api : lerp_grad
958
  forward : lerp (Tensor x, Tensor y, Tensor weight) -> Tensor(out)
959 960 961 962 963 964 965 966
  args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : lerp_grad

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
- backward_api : lgamma_grad
  forward : lgamma(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : lgamma_grad

- backward_api : log10_grad
  forward : log10 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log10_grad
P
pangyoki 已提交
986
  inplace : (out_grad -> x_grad)
987 988 989 990 991 992 993 994 995 996

- backward_api : log1p_grad
  forward : log1p (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log1p_grad
P
pangyoki 已提交
997
  inplace : (out_grad -> x_grad)
998 999 1000 1001 1002 1003 1004 1005 1006 1007

- backward_api : log2_grad
  forward : log2 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log2_grad
P
pangyoki 已提交
1008
  inplace : (out_grad -> x_grad)
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
- backward_api : log_double_grad
  forward : log_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : log_double_grad

1020 1021 1022 1023 1024 1025 1026 1027 1028
- backward_api : log_grad
  forward : log (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log_grad
1029
  backward : log_double_grad
P
pangyoki 已提交
1030
  inplace : (out_grad -> x_grad)
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
- backward_api : log_loss_grad
  forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad, float epsilon)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : log_loss_grad

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
- backward_api : log_softmax_grad
  forward : log_softmax(Tensor x,  int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad,  int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out]
  kernel :
    func : log_softmax_grad

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
- backward_api : logit_grad
  forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float eps)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logit_grad

1062 1063
- backward_api : logsigmoid_grad
  forward : logsigmoid (Tensor x) -> Tensor(out)
H
hong 已提交
1064 1065 1066
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
1067 1068 1069 1070
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logsigmoid_grad
P
pangyoki 已提交
1071
  inplace : (out_grad -> x_grad)
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
- backward_api : logsumexp_grad
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
- backward_api : masked_select_grad
  forward : masked_select (Tensor x, Tensor mask) -> Tensor(out)
  args : (Tensor x, Tensor mask, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : masked_select_grad
    data_type : x
H
hong 已提交
1093
  no_need_buffer : x
1094 1095

- backward_api : matmul_double_grad
1096 1097 1098
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
1099 1100
  infer_meta :
    func : GeneralTernaryGradInferMeta
1101
    param : [x, y, grad_out]
1102 1103
  kernel :
    func : matmul_double_grad
1104
  backward : matmul_triple_grad
1105
  optional : grad_x_grad, grad_y_grad
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

- backward_api : matmul_grad
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
1116
  backward : matmul_double_grad
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
- backward_api : matmul_triple_grad
  forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad, grad_grad_out_grad

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
- backward_api : matrix_power_grad
  forward : matrix_power (Tensor x, int n) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int n)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : matrix_power_grad

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
- backward_api : max_grad
  forward: max (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad

F
From00 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
- backward_api : max_pool2d_with_index_grad
  forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool2d_with_index_grad

- backward_api : max_pool3d_with_index_grad
  forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool3d_with_index_grad

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
- backward_api : maximum_grad
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
- backward_api : maxout_grad
  forward : maxout(Tensor x, int groups, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param: [x]
  kernel :
    func : maxout_grad

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
- backward_api : mean_all_grad
  forward : mean_all(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_all_grad

1197 1198 1199 1200 1201 1202
- backward_api : mean_double_grad
  forward: mean_grad (Tensor x, Tensor grad_out, int64_t[] dims={},  bool keep_dim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(grad_out_grad)
  invoke : mean(grad_x_grad, dims, keep_dim)

1203 1204 1205 1206 1207 1208 1209 1210 1211
- backward_api : mean_grad
  forward: mean (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
1212
  backward : mean_double_grad
H
hong 已提交
1213
  no_need_buffer : x
1214

Y
YuanRisheng 已提交
1215 1216 1217
- backward_api : meshgrid_grad
  forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs)
  args : (Tensor[] inputs, Tensor[] outputs_grad)
1218 1219 1220 1221 1222
  output : Tensor[](inputs_grad){inputs.size()}
  infer_meta :
    func : MeshgridGradInferMeta
  kernel :
    func : meshgrid_grad
Y
YuanRisheng 已提交
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
- backward_api : min_grad
  forward: min (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
- backward_api : minimum_grad
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

1244 1245 1246 1247 1248 1249 1250 1251 1252
- backward_api : mish_grad
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad
P
pangyoki 已提交
1253
  inplace : (out_grad -> x_grad)
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
- backward_api : mode_grad
  forward : mode(Tensor x,  int axis,  bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad,  int axis,  bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mode_grad

1265
- backward_api : modulo_grad
1266
  forward : modulo (Tensor x, Tensor y) -> Tensor(out)
1267 1268 1269 1270 1271 1272 1273 1274 1275
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : modulo_grad
  no_need_buffer : x, y

1276 1277 1278
- backward_api : multi_dot_grad
  forward : multi_dot (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
1279 1280 1281 1282 1283
  output : Tensor[](x_grad) {x.size()}
  infer_meta :
    func : MultiDotGradInferMeta
  kernel :
    func : multi_dot_grad
1284 1285 1286 1287

- backward_api : multiplex_grad
  forward : multiplex (Tensor[] ins, Tensor ids) -> Tensor(out)
  args : (Tensor[] ins, Tensor ids, Tensor out_grad)
1288 1289 1290 1291 1292 1293 1294
  output : Tensor[](ins_grad){ins.size()}
  infer_meta :
    func : MultiplexGradInferMeta
    param : [ids, out_grad]
  kernel :
    func : multiplex_grad
    param : [ids, out_grad]
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
- backward_api : multiply_double_grad
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
1306
  backward : multiply_triple_grad
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316
- backward_api : multiply_grad
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
1317
  backward : multiply_double_grad
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
- backward_api : multiply_triple_grad
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, x, y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_grad_out_grad

1330 1331 1332 1333 1334 1335 1336
- backward_api : mv_grad
  forward : mv (Tensor x, Tensor vec) -> Tensor(out)
  args : (Tensor x, Tensor vec, Tensor out_grad)
  output : Tensor(x_grad), Tensor(vec_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, vec]
H
hong 已提交
1337
  kernel :
1338
    func : mv_grad
H
hong 已提交
1339

1340
- backward_api : nll_loss_grad
Z
zyfncg 已提交
1341 1342 1343
  forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight)
  args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction)
  output : Tensor(input_grad)
H
hong 已提交
1344
  infer_meta :
Z
zyfncg 已提交
1345
    func : NllLossGradInferMeta
H
hong 已提交
1346
  kernel :
1347
    func : nll_loss_grad
Z
zyfncg 已提交
1348
    data_type : input
1349
  optional : weight
H
hong 已提交
1350

H
hong 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
- backward_api : norm_grad
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
- backward_api : p_norm_grad
  forward : p_norm(Tensor x,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : p_norm_grad

1371 1372 1373 1374 1375 1376 1377 1378 1379
- backward_api : pad3d_double_grad
  forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : Pad3dInferMeta
  kernel :
    func : pad3d

1380 1381 1382 1383 1384 1385 1386 1387 1388
- backward_api : pad3d_grad
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad
W
wanghuancoder 已提交
1389
  no_need_buffer : x
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
  backward : pad3d_double_grad

- backward_api : pad_double_grad
  forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, float pad_value) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] paddings, float pad_value)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PadInferMeta
  kernel :
    func : pad

- backward_api : pad_grad
  forward : pad(Tensor x, int[] paddings, float pad_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] paddings, float pad_value)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad_grad
    param: [out_grad, paddings, pad_value]
  no_need_buffer : x
  backward : pad_double_grad
1413

H
hong 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422
- backward_api : pixel_shuffle_grad
  forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out)
  args : (Tensor out_grad, int upscale_factor, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : PixelShuffleGradInferMeta
  kernel :
    func : pixel_shuffle_grad

H
hong 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
- backward_api : poisson_grad
  forward : poisson (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : poisson_grad

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
- backward_api : pool2d_double_grad
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PoolInferMeta
  kernel :
    func : pool2d_double_grad
    use_gpudnn : true

F
From00 已提交
1443 1444 1445 1446 1447 1448 1449 1450
- backward_api : pool2d_grad
  forward : pool2d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool2d_grad
1451
    use_gpudnn : true
1452
  backward : pool2d_double_grad
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

- backward_api : pool2d_grad_gpudnn_unused
  forward : pool2d_gpudnn_unused(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool2d_grad
    use_gpudnn : false
F
From00 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471

- backward_api : pool3d_grad
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool3d_grad
1472
    use_gpudnn : true
F
From00 已提交
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482
- backward_api : pow_grad
  forward : pow(Tensor x, Scalar s) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar s=-1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pow_grad
P
pangyoki 已提交
1483
  inplace : (out_grad -> x_grad)
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
- backward_api : prelu_grad
  forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out)
  args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode)
  output : Tensor(x_grad), Tensor(alpha_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, alpha]
  kernel :
    func : prelu_grad

1495
- backward_api : psroi_pool_grad
Z
zyfncg 已提交
1496 1497
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
1498 1499
  output : Tensor(x_grad)
  infer_meta :
Z
zyfncg 已提交
1500
    func : GeneralUnaryGradInferMeta
1501 1502
    param : [x]
  kernel :
1503
    func : psroi_pool_grad
1504
    data_type : x
Z
zyfncg 已提交
1505
  optional : boxes_num
1506 1507 1508 1509 1510 1511

# output is optional
- backward_api : put_along_axis_grad
  forward : put_along_axis (Tensor x, Tensor index, Tensor value, int axis, str reduce) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis, str reduce)
  output : Tensor(x_grad), Tensor(value_grad)
H
hong 已提交
1512
  infer_meta :
1513 1514
    func : GeneralBinaryGradInferMeta
    param : [x, index]
H
hong 已提交
1515
  kernel :
1516
    func : put_along_axis_grad
H
hong 已提交
1517

Z
zyfncg 已提交
1518 1519 1520 1521
- backward_api : real_grad
  forward : real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
1522
  invoke : real_grad_impl(out_grad, x_grad)
Z
zyfncg 已提交
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532
- backward_api : reciprocal_grad
  forward : reciprocal (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : reciprocal_grad
P
pangyoki 已提交
1533
  inplace : (out_grad -> x_grad)
1534

H
hong 已提交
1535 1536 1537 1538 1539 1540 1541 1542
- backward_api : reduce_prod_grad
  forward : reduce_prod (Tensor x, int64_t[] dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
H
hong 已提交
1543
    func : prod_grad
H
hong 已提交
1544

1545 1546 1547
- backward_api : relu_double_grad
  forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x_grad)
1548
  output : Tensor(grad_out_grad)
1549
  infer_meta :
1550 1551
    func : UnchangedInferMeta
    param : [out]
1552 1553 1554
  kernel :
    func : relu_double_grad

1555 1556 1557
- backward_api : relu_grad
  forward : relu (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
H
hong 已提交
1558 1559 1560
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
1561
    param : [out]
H
hong 已提交
1562
  kernel :
1563
    func : relu_grad
1564
  backward: relu_double_grad
P
pangyoki 已提交
1565
  inplace : (out_grad -> x_grad)
H
hong 已提交
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575
- backward_api : reshape_double_grad
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
W
wanghuancoder 已提交
1576
  no_need_buffer : grad_out
1577

1578
- backward_api : reshape_grad
1579
  forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
1591
  backward : reshape_double_grad
1592
  inplace : (out_grad -> x_grad)
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602
- backward_api : roi_align_grad
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
1603
    data_type : boxes
W
wanghuancoder 已提交
1604
  no_need_buffer : x
1605 1606
  optional : boxes_num

Z
zyfncg 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615
- backward_api : roi_pool_grad
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
1616
    data_type : x
Z
zyfncg 已提交
1617 1618
  optional : boxes_num

F
From00 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
- backward_api : roll_grad
  forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roll_grad
    data_type : x
H
hong 已提交
1629
  no_need_buffer : x
F
From00 已提交
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639
- backward_api : round_grad
  forward : round(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : round_grad
P
pangyoki 已提交
1640
  inplace : (out_grad -> x_grad)
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
- backward_api : rsqrt_double_grad
  forward : rsqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : rsqrt_double_grad

Z
zyfncg 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660
- backward_api : rsqrt_grad
  forward : rsqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : rsqrt_grad
1661
  backward : rsqrt_double_grad
P
pangyoki 已提交
1662
  inplace : (out_grad -> x_grad)
Z
zyfncg 已提交
1663

1664 1665 1666 1667 1668 1669 1670
- backward_api : scale_double_grad
  forward : scale_grad (Tensor grad_out, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_out_grad)
  invoke : scale(grad_x_grad, scale, 0.0, bias_after_scale)
  backward : scale_triple_grad

1671 1672
- backward_api : scale_grad
  forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
1673
  args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
H
hong 已提交
1674
  output : Tensor(x_grad)
1675
  invoke : scale(out_grad, scale, 0.0, bias_after_scale)
1676
  backward : scale_double_grad
1677
  inplace : (out_grad -> x_grad)
1678 1679 1680 1681 1682 1683

- backward_api : scale_triple_grad
  forward : scale_double_grad (Tensor grad_grad_x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_grad_x_grad)
  invoke : scale(grad_grad_out_grad, scale, 0.0, bias_after_scale)
H
hong 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

- backward_api : scatter_grad
  forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterGradInferMeta
    param : [index, updates, out_grad, overwrite]
  kernel :
    func : scatter_grad
H
hong 已提交
1694
  no_need_buffer : updates
H
hong 已提交
1695 1696

- backward_api : scatter_nd_add_grad
1697
  forward : scatter_nd_add (Tensor x, Tensor index, Tensor updates) -> Tensor(out)
H
hong 已提交
1698 1699 1700 1701 1702 1703
  args : (Tensor index, Tensor updates, Tensor out_grad)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterNdAddGradInferMeta
    param : [index, updates, out_grad]
  kernel :
1704
    func : scatter_nd_add_grad
H
hong 已提交
1705
  no_need_buffer : updates
H
hong 已提交
1706

1707 1708 1709 1710
- backward_api : segment_pool_grad
  forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype)
  output : Tensor(x_grad)
H
hong 已提交
1711
  infer_meta :
1712 1713
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1714
  kernel :
1715
    func : segment_pool_grad
1716
    data_type : x
H
hong 已提交
1717
  optional : summed_ids
H
hong 已提交
1718

1719 1720 1721 1722
- backward_api : selu_grad
  forward : selu (Tensor x, float scale, float alpha) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float scale, float alpha)
  output : Tensor(x_grad)
H
hong 已提交
1723
  infer_meta :
1724 1725
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
1726
  kernel :
1727
    func : selu_grad
H
hong 已提交
1728

1729 1730 1731 1732 1733 1734 1735 1736
- backward_api : sigmoid_cross_entropy_with_logits_grad
  forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1737
    func : sigmoid_cross_entropy_with_logits_grad
P
pangyoki 已提交
1738
  inplace : (out_grad -> x_grad)
H
hong 已提交
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
- backward_api : sigmoid_double_grad
  forward : sigmoid_grad (Tensor out, Tensor fwd_grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, fwd_grad_out]
  kernel :
    func : sigmoid_double_grad
  backward : sigmoid_triple_grad

1751 1752 1753 1754 1755 1756 1757 1758 1759
- backward_api : sigmoid_grad
  forward : sigmoid (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sigmoid_grad
1760
  backward : sigmoid_double_grad
P
pangyoki 已提交
1761
  inplace : (out_grad -> x_grad)
1762 1763 1764 1765 1766 1767 1768 1769 1770

- backward_api : sigmoid_triple_grad
  forward : sigmoid_double_grad (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x) -> Tensor(grad_out), Tensor(grad_grad_out)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x, Tensor grad_out_grad, Tensor grad_grad_out_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad), Tensor(grad_grad_x_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, fwd_grad_out, grad_grad_x]
  kernel :
1771
    func : sigmoid_triple_grad
1772
  optional : grad_grad_out_grad
H
hong 已提交
1773

1774 1775 1776
- backward_api : silu_grad
  forward : silu (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
1777 1778 1779 1780 1781
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1782
    func : silu_grad
P
pangyoki 已提交
1783
  inplace : (out_grad -> x_grad)
H
hong 已提交
1784

1785 1786 1787 1788
- backward_api : sin_grad
  forward : sin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1789
  infer_meta :
1790 1791
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1792
  kernel :
1793
    func : sin_grad
P
pangyoki 已提交
1794
  inplace : (out_grad -> x_grad)
H
hong 已提交
1795

1796 1797 1798 1799
- backward_api : sinh_grad
  forward : sinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1800
  infer_meta :
1801 1802
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1803
  kernel :
1804
    func : sinh_grad
P
pangyoki 已提交
1805
  inplace : (out_grad -> x_grad)
H
hong 已提交
1806

H
hong 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815
- backward_api : slice_grad
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
H
hong 已提交
1816
  no_need_buffer : input
H
hong 已提交
1817

1818 1819 1820 1821
- backward_api : soft_shrink_grad
  forward : soft_shrink (Tensor x, float lambda) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float lambda)
  output : Tensor(x_grad)
H
hong 已提交
1822 1823
  infer_meta :
    func : UnchangedInferMeta
1824
    param : [x]
H
hong 已提交
1825
  kernel :
1826
    func : soft_shrink_grad
P
pangyoki 已提交
1827
  inplace : (out_grad -> x_grad)
H
hong 已提交
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837
- backward_api : softmax_grad
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
1838
    use_gpudnn : true
H
hong 已提交
1839

1840
- backward_api : split_grad
1841
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
H
hong 已提交
1842
  args : (Tensor[] out_grad, Scalar axis = -1)
1843 1844 1845
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future.
H
hong 已提交
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
- backward_api : sqrt_double_grad
  forward : sqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : sqrt_double_grad

1857 1858 1859 1860 1861 1862 1863 1864 1865
- backward_api : sqrt_grad
  forward : sqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sqrt_grad
1866
  backward : sqrt_double_grad
P
pangyoki 已提交
1867
  inplace : (out_grad -> x_grad)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

- backward_api : square_double_grad
  forward : square_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : square_double_grad
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

- backward_api : square_grad
  forward : square (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : square_grad
1888
  backward : square_double_grad
P
pangyoki 已提交
1889
  inplace : (out_grad -> x_grad)
1890

1891 1892 1893 1894 1895 1896
- backward_api : squeeze_double_grad
  forward : squeeze_grad(Tensor xshape, Tensor grad_out, int[] axes) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] axes)
  output : Tensor(grad_out_grad)
  invoke: squeeze(grad_x_grad, axes)

1897
- backward_api : squeeze_grad
1898
  forward : squeeze(Tensor x, int[] axes) -> Tensor(out), Tensor(xshape)
1899 1900 1901 1902 1903 1904 1905
  args : (Tensor xshape, Tensor out_grad, int[] axes)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : squeeze_grad
1906
  inplace : (out_grad -> x_grad)
1907
  backward: squeeze_double_grad
1908

1909 1910 1911
- backward_api : stack_grad
  forward : stack (Tensor[] x, int axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, int axis)
1912 1913 1914 1915 1916 1917 1918
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : StackGradInferMeta
    param: [out_grad, axis]
  kernel :
    func : stack_grad
    param : [out_grad, axis]
1919 1920
  no_need_buffer : x

1921 1922 1923 1924 1925 1926 1927 1928 1929
- backward_api : strided_slice_grad
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
H
hong 已提交
1930
  no_need_buffer : x
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
- backward_api : subtract_double_grad
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out

1944 1945 1946 1947 1948 1949 1950 1951 1952
- backward_api : subtract_grad
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
H
hong 已提交
1953
  no_need_buffer : x, y
1954
  backward : subtract_double_grad
1955
  inplace : (out_grad -> x_grad)
H
hong 已提交
1956

1957 1958 1959 1960 1961 1962 1963
- backward_api : sum_double_grad
  forward : sum_grad (Tensor x, Tensor grad_out, int64_t[] dims, bool keep_dim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int64_t[] dims={}, bool keep_dim=false)
  output : Tensor(grad_out_grad)
  invoke : sum(grad_x_grad, dims, grad_x_grad.dtype(), keep_dim)
  backward : sum_triple_grad

F
From00 已提交
1964
- backward_api : sum_grad
1965
  forward : sum (Tensor x, int64_t[] dims={}, DataType out_dtype=DataType::UNDEFINED, bool keep_dim=false) -> Tensor(out)
F
From00 已提交
1966 1967 1968 1969 1970 1971 1972
  args : (Tensor x, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
W
wanghuancoder 已提交
1973
  no_need_buffer : x
1974 1975 1976 1977 1978 1979
  backward : sum_double_grad

- backward_api : sum_triple_grad
  forward : sum_double_grad (Tensor grad_grad_x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false)
  output : Tensor(grad_grad_x_grad)
1980
  invoke : sum_grad(grad_grad_x, grad_grad_out_grad, dims, keep_dim, reduce_all, grad_grad_x_grad)
F
From00 已提交
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990
- backward_api : swish_grad
  forward : swish (Tensor x, float beta=1.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float bete=1.0)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad
P
pangyoki 已提交
1991
  inplace : (out_grad -> x_grad)
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001
- backward_api : take_along_axis_grad
  forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : take_along_axis_grad
H
hong 已提交
2002

2003 2004 2005
- backward_api : tan_grad
  forward : tan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
2006 2007 2008 2009 2010
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
2011
    func : tan_grad
P
pangyoki 已提交
2012
  inplace : (out_grad -> x_grad)
H
hong 已提交
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
- backward_api : tanh_double_grad
  forward : tanh_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : tanh_double_grad
  backward : tanh_triple_grad

2025 2026 2027 2028
- backward_api : tanh_grad
  forward : tanh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
2029
  infer_meta :
2030 2031
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
2032
  kernel :
2033
    func : tanh_grad
2034
  backward : tanh_double_grad
P
pangyoki 已提交
2035
  inplace : (out_grad -> x_grad)
H
hong 已提交
2036

2037 2038
- backward_api : tanh_shrink_grad
  forward : tanh_shrink (Tensor x) -> Tensor(out)
Z
zhangbo9674 已提交
2039 2040 2041 2042 2043 2044
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
2045
    func : tanh_shrink_grad
P
pangyoki 已提交
2046
  inplace : (out_grad -> x_grad)
H
hong 已提交
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
- backward_api : tanh_triple_grad
  forward : tanh_double_grad (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward) -> Tensor(grad_out_new), Tensor(grad_out_grad)
  args : (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward, Tensor grad_out_new_grad, Tensor grad_out_grad_grad)
  output : Tensor(out_grad), Tensor(grad_out_forward_grad), Tensor(grad_x_grad_forward_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, out, grad_x_grad_forward]
  kernel :
    func : tanh_triple_grad

2058 2059 2060 2061 2062 2063 2064 2065 2066
- backward_api : thresholded_relu_grad
  forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : thresholded_relu_grad
P
pangyoki 已提交
2067
  inplace : (out_grad -> x_grad)
H
hong 已提交
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077
- backward_api : tile_double_grad
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : TileInferMeta
  kernel :
    func : tile

2078
- backward_api : tile_grad
2079 2080
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
2081 2082 2083 2084 2085 2086
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
H
hong 已提交
2087
  no_need_buffer : x
2088
  backward : tile_double_grad
H
hong 已提交
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
- backward_api : top_k_grad
  forward : top_k (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : top_k_grad

2100 2101 2102 2103 2104 2105 2106 2107 2108
- backward_api : trace_grad
  forward : trace (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset, int axis1, int axis2)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : trace_grad
H
hong 已提交
2109
  no_need_buffer : x
H
hong 已提交
2110

2111 2112 2113 2114 2115 2116
- backward_api : transpose_double_grad
  forward : transpose_grad (Tensor grad_out, int[] axis) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] axis)
  output : Tensor(grad_out_grad)
  invoke : transpose(grad_x_grad, axis)

2117 2118 2119 2120 2121 2122 2123 2124 2125
- backward_api : transpose_grad
  forward : transpose (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
    param : [out_grad, axis]
  kernel :
    func : transpose_grad
2126
  backward : transpose_double_grad
H
hong 已提交
2127

H
hong 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
- backward_api : triangular_solve_grad
  forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : triangular_solve_grad

F
From00 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
- backward_api : tril_triu_grad
  forward : tril_triu(Tensor x,  int diagonal,  bool lower) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal,  bool lower)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : tril_triu_grad

2148 2149 2150 2151 2152 2153 2154 2155 2156
- backward_api : trunc_grad
  forward : trunc (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : trunc_grad
H
hong 已提交
2157

2158 2159 2160 2161 2162 2163
- backward_api : unbind_grad
  forward : unbind (Tensor input, int axis) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(input_grad)
  invoke : stack(out_grad, axis)

2164 2165 2166 2167 2168 2169 2170 2171 2172
- backward_api : unfold_grad
  forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : unfold_grad
H
hong 已提交
2173
  no_need_buffer : x
H
hong 已提交
2174

2175 2176 2177 2178 2179 2180
- backward_api : unsqueeze_double_grad
  forward : unsqueeze_grad(Tensor xshape, Tensor grad_out, IntArray axes) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axes)
  output : Tensor(grad_out_grad)
  invoke : unsqueeze(grad_x_grad, axes)

2181
- backward_api : unsqueeze_grad
2182
  forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(out), Tensor(xshape)
2183
  args : (Tensor xshape, Tensor out_grad, IntArray axes)
2184 2185 2186 2187 2188 2189
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : unsqueeze_grad
2190
    param: [xshape, out_grad]
2191
  inplace : (out_grad -> x_grad)
2192
  backward : unsqueeze_double_grad
2193

2194 2195 2196 2197 2198 2199 2200 2201 2202
- backward_api : where_grad
  forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : where_grad
H
hong 已提交
2203
  no_need_buffer : x, y