slice_op_plugin.cu 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <stdio.h>
#include <cassert>
#include <cub/cub.cuh>  // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

template <typename T>
__global__ void SliceKernel(int num, int dims, const T *input,
                            const int *offsets_info, T *output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  extern __shared__ int shared_data[];

34 35
  for (int i = threadIdx.x; i < dims * 3; i += blockDim.x) {
    shared_data[i] = offsets_info[i];
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  }
  __syncthreads();

  if (idx < num) {
    int t_idx = idx;
    int in_idx = 0;
    for (int i = dims - 1; i >= 0; i--) {
      // output_shape
      auto t = t_idx % shared_data[i * 3 + 1];
      // out offset
      auto s = t + shared_data[i * 3];
      // input_seg_offset
      in_idx = in_idx + shared_data[i * 3 + 2] * s;
      t_idx = t_idx / shared_data[i * 3 + 1];
    }
    output[idx] = input[in_idx];
  }
}

55
SlicePlugin::SlicePlugin(std::vector<int> starts, std::vector<int> ends,
56 57 58
                         std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
59 60 61 62 63 64 65
}

SlicePlugin::SlicePlugin(void const *serial_data, size_t serial_length) {
  deserializeBase(serial_data, serial_length);
  DeserializeValue(&serial_data, &serial_length, &starts_);
  DeserializeValue(&serial_data, &serial_length, &ends_);
  DeserializeValue(&serial_data, &serial_length, &axes_);
W
wenbin 已提交
66
  DeserializeValue(&serial_data, &serial_length, &with_fp16_);
W
Wilber 已提交
67
  DeserializeValue(&serial_data, &serial_length, &offset_info_);
68 69
}

W
Wilber 已提交
70
SlicePlugin::~SlicePlugin() { cudaFree(offset_temp_data_); }
71

72
SlicePlugin *SlicePlugin::clone() const TRT_NOEXCEPT {
73
  return new SlicePlugin(starts_, ends_, axes_, with_fp16_);
74 75
}

76 77
bool SlicePlugin::supportsFormat(
    nvinfer1::DataType type, nvinfer1::PluginFormat format) const TRT_NOEXCEPT {
78
  if (with_fp16_) {
79 80
    return ((type == nvinfer1::DataType::kFLOAT ||
             type == nvinfer1::DataType::kHALF) &&
81
            (format == nvinfer1::PluginFormat::kLINEAR));
82 83
  } else {
    return ((type == nvinfer1::DataType::kFLOAT) &&
84
            (format == nvinfer1::PluginFormat::kLINEAR));
85
  }
86 87
}

88 89
nvinfer1::Dims SlicePlugin::getOutputDimensions(
    int index, const nvinfer1::Dims *inputs, int nb_input_dims) TRT_NOEXCEPT {
90 91 92 93 94 95 96 97 98 99 100
  auto in_dims = inputs[0];
  nvinfer1::Dims out_dims = in_dims;
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    out_dims.d[axes_[i] - 1] = end - start;
  }
  return out_dims;
}

int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
101
#if IS_TRT_VERSION_LT(8000)
102
                         void **outputs, void *workspace, cudaStream_t stream) {
103 104
#else
                         void *const *outputs, void *workspace,
105
                         cudaStream_t stream) TRT_NOEXCEPT {
106
#endif
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  auto input_dims = getInputDims(0);

  // notice input dims is [C, H, W], add input batch dim here
  auto out_dims = getOutputDimensions(0, &input_dims, 1);
  input_dims.nbDims += 1;
  out_dims.nbDims += 1;
  for (auto i = input_dims.nbDims; i > 0; --i) {
    input_dims.d[i] = input_dims.d[i - 1];
    out_dims.d[i] = out_dims.d[i - 1];
  }
  input_dims.d[0] = batch_size;
  out_dims.d[0] = batch_size;

  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }
  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }

  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
W
Wilber 已提交
155
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice, stream);
156 157 158 159 160

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = getDataType();
  if (input_type == nvinfer1::DataType::kFLOAT) {
161
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
162 163 164 165 166
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
167
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
168 169 170 171 172 173 174 175 176 177 178
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}

179
size_t SlicePlugin::getSerializationSize() const TRT_NOEXCEPT {
W
wenbin 已提交
180 181
  return getBaseSerializationSize() + SerializedSize(starts_) +
         SerializedSize(ends_) + SerializedSize(axes_) +
W
Wilber 已提交
182
         SerializedSize(with_fp16_) + SerializedSize(offset_info_);
183 184
}

185
void SlicePlugin::serialize(void *buffer) const TRT_NOEXCEPT {
186 187 188 189
  serializeBase(buffer);
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
W
wenbin 已提交
190
  SerializeValue(&buffer, with_fp16_);
W
Wilber 已提交
191
  SerializeValue(&buffer, offset_info_);
192 193 194 195 196 197
}

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
SlicePluginDynamic::SlicePluginDynamic(std::vector<int> starts,
                                       std::vector<int> ends,
198 199 200
                                       std::vector<int> axes, int decrease_axis,
                                       bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes), decrease_axis_(decrease_axis) {
201
  with_fp16_ = with_fp16;
202 203 204 205 206 207 208
}

SlicePluginDynamic::SlicePluginDynamic(void const *serialData,
                                       size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &starts_);
  DeserializeValue(&serialData, &serialLength, &ends_);
  DeserializeValue(&serialData, &serialLength, &axes_);
209
  DeserializeValue(&serialData, &serialLength, &decrease_axis_);
210
  DeserializeValue(&serialData, &serialLength, &with_fp16_);
W
Wilber 已提交
211
  DeserializeValue(&serialData, &serialLength, &offset_info_);
212 213
}

214
void SlicePluginDynamic::destroy() TRT_NOEXCEPT {
215 216 217 218
  cudaFree(offset_temp_data_);
  delete this;
}

219
int SlicePluginDynamic::initialize() TRT_NOEXCEPT { return 0; }
220

221
size_t SlicePluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
222
  size_t size = SerializedSize(starts_) + SerializedSize(ends_) +
223
                SerializedSize(axes_) + SerializedSize(decrease_axis_) +
W
Wilber 已提交
224
                SerializedSize(with_fp16_) + SerializedSize(offset_info_);
225

226 227 228
  return size;
}

229
void SlicePluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
230 231 232
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
233
  SerializeValue(&buffer, decrease_axis_);
234
  SerializeValue(&buffer, with_fp16_);
W
Wilber 已提交
235
  SerializeValue(&buffer, offset_info_);
236
}
237 238 239

nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
240
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
241
  auto in_dims = inputs[0];
242
  nvinfer1::DimsExprs ret = in_dims;
243 244 245 246
  // start, ends should greater 0
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
S
Shang Zhizhou 已提交
247 248 249 250 251 252 253 254
#if IS_TRT_VERSION_GE(7200)
    ret.d[axes_[i]] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUB,
        *expr_builder.operation(nvinfer1::DimensionOperation::kMIN,
                                *expr_builder.constant(ends_[i]),
                                *in_dims.d[axes_[i]]),
        *expr_builder.constant(start));
#else
255
    ret.d[axes_[i]] = expr_builder.constant(end - start);
S
Shang Zhizhou 已提交
256
#endif
257
  }
258 259 260 261 262 263 264 265 266 267 268
  if (decrease_axis_ != -1) {
    nvinfer1::DimsExprs res;
    res.nbDims = ret.nbDims - 1;
    int j = 0;
    for (size_t i = 0; i < in_dims.nbDims; i++) {
      if (decrease_axis_ == i) continue;
      res.d[j++] = expr_builder.operation(nvinfer1::DimensionOperation::kMAX,
                                          *expr_builder.constant(0), *ret.d[i]);
    }
    return res;
  }
269 270 271 272 273
  return ret;
}

bool SlicePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
274
    int nb_outputs) TRT_NOEXCEPT {
275 276 277 278 279 280 281 282 283 284 285 286
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
287
    if (with_fp16_) {
288 289
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
290
             (in.format == nvinfer1::TensorFormat::kLINEAR);
291 292 293
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
294 295 296 297 298 299 300 301
    }
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SlicePluginDynamic::getOutputDataType(
302 303
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
304 305 306 307 308 309 310 311 312 313 314 315 316 317
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Slice Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT ||
                     input_types[0] == nvinfer1::DataType::kHALF),
                    true, platform::errors::InvalidArgument(
                              "The input type should be half or float"));
  return input_types[0];
}

int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                const nvinfer1::PluginTensorDesc *output_desc,
                                const void *const *inputs, void *const *outputs,
318 319
                                void *workspace,
                                cudaStream_t stream) TRT_NOEXCEPT {
320 321
  auto input_dims = input_desc[0].dims;
  auto out_dims = output_desc[0].dims;
322 323 324 325
  if (decrease_axis_ != -1) {
    out_dims = input_dims;
    out_dims.d[decrease_axis_] = 1;
  }
326 327 328 329 330 331 332
  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

333 334 335
  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);
336 337 338 339 340 341 342 343 344 345 346 347 348 349

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }

  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

W
Wilber 已提交
350
  offset_info_.resize(num_dims * 3);
351
  for (size_t i = 0; i < num_dims; ++i) {
W
Wilber 已提交
352 353 354
    offset_info_[i * 3 + 0] = offsets[i];
    offset_info_[i * 3 + 1] = extends[i];
    offset_info_[i * 3 + 2] = seg_offsets[i];
355 356
  }

357 358 359
  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }
360

W
Wilber 已提交
361 362
  cudaMemcpyAsync(offset_temp_data_, offset_info_.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice, stream);
363 364 365 366 367

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
368
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
369 370 371
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
372
        out_num, num_dims, input1, offset_temp_data_, output);
373
  } else if (input_type == nvinfer1::DataType::kHALF) {
374
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
375 376 377
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
378
        out_num, num_dims, input1, offset_temp_data_, output);
379 380 381 382 383 384 385 386 387 388 389 390
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle