predefined_net.py 15.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from paddle.trainer.config_parser import *
from paddle.utils.preprocess_img import \
    ImageClassificationDatasetCreater
from paddle.trainer_config_helpers import *


def image_data(data_dir,
               processed_image_size,
               overwrite=False,
               color=True,
               train_list="batches/train.list",
               test_list="batches/test.list",
               meta_file="batches/batches.meta",
               use_jpeg=1):
    """
    Predefined image data provider for image classification.
    train_list: a text file containing a list of training batches.
    test_list: a text file containing a list of test batches.
    processed_image_size: all the input images will be resized into this size.
       If the image is not square. Then the shorter edge will be resized into
       this size, and the aspect ratio is kept the same.
    color: whether the images are color or gray.
    meta_path: the path of the meta file that stores the mean image file and
               other dataset information, such as the size of images,
               the size of the mean image, the number of classes.
    async_load_data: whether to load image data asynchronuously.
    """
    data_creator = ImageClassificationDatasetCreater(data_dir,
                                                     processed_image_size,
                                                     color)
    batch_data_dir = data_dir
    train_list = os.path.join(batch_data_dir, train_list)
    test_list = os.path.join(batch_data_dir, test_list)
    meta_path = os.path.join(batch_data_dir, meta_file)
    image_size = processed_image_size
    conf = np.load(meta_path)
    mean_image_size = conf["mean_image_size"]
    is_color = conf["color"]
    num_classes = conf["num_classes"]
    color_string = "color" if is_color else "gray"

    args = {
        'meta': meta_path,
        'mean_img_size': mean_image_size,
        'img_size': image_size,
        'num_classes': num_classes,
        'use_jpeg': use_jpeg != 0,
        'color': color_string
    }

    define_py_data_sources2(train_list, test_list,
                           module='image_provider',
                           obj='processData',
                           args=args)
    return {"image_size": image_size,
            "num_classes": num_classes,
            "is_color": is_color}


def get_extra_layer_attr(drop_rate):
    if drop_rate == 0:
        return None
    else:
        return ExtraLayerAttribute(drop_rate=drop_rate)


def image_data_layers(image_size, num_classes,
                      is_color=False, is_predict=False):
    """
    Data layers for image classification.
    image_size: image size.
    num_classes: num of classes.
    is_color: whether the input images are color.
    is_predict: whether the network is used for prediction.
    """
    num_image_channels = 3 if is_color else 1
    data_input = data_layer("input",
                            image_size * image_size * num_image_channels)
    if is_predict:
        return data_input, None, num_image_channels
    else:
        label_input = data_layer("label", 1)
        return data_input, label_input, num_image_channels


def simple_conv_net(data_conf, is_color=False):
    """
    A Wrapper for a simple network for MNIST digit recognition.
    It contains two convolutional layers, one fully conencted layer, and
    one softmax layer.
    data_conf is a dictionary with the following keys:
        image_size: image size.
        num_classes: num of classes.
        is_color: whether the input images are color.
    """
    for k, v in data_conf.iteritems(): globals()[k] = v
    data_input, label_input, num_image_channels = \
        image_data_layers(image_size, num_classes, is_color, is_predict)
    filter_sizes = [5, 5]
    num_channels = [32, 64]
    strides = [1, 1]
    fc_dims = [500]
    conv_bn_pool1 = img_conv_bn_pool(name="g1",
                                     input=data_input,
                                     filter_size=filter_sizes[0],
                                     num_channel=num_image_channels,
                                     num_filters=num_channels[0],
                                     conv_stride=1,
                                     conv_padding=0,
                                     pool_size=3,
                                     pool_stride=2,
                                     act=ReluActivation())
    conv_bn_pool2 = img_conv_bn_pool(name="g2",
                                     input=conv_bn_pool1,
                                     filter_size=filter_sizes[1],
                                     num_channel=num_channels[0],
                                     num_filters=num_channels[1],
                                     conv_stride=1,
                                     conv_padding=0,
                                     pool_size=3,
                                     pool_stride=2,
                                     act=ReluActivation())
    fc3 = fc_layer(name="fc3",
                   input=conv_bn_pool2,
                   dim=fc_dims[0],
                   act=ReluActivation())
    fc3_dropped = dropout_layer(name="fc3_dropped",
                                input=fc3,
                                dropout_rate=0.5)
    output = fc_layer(name="output",
                      input=fc3_dropped,
                      dim=fc_dims[0],
                      act=SoftmaxActivation())
    if is_predict:
        end_of_network(output)
    else:
        cost = classify(name="cost",
                        input=output,
                        label=label_input)
        end_of_network(cost)


def conv_layer_group(prefix_num, num_layers, input,
                     input_channels, output_channels,
                     drop_rates=[], strides=[],
                     with_bn=[]):
    """
    A set of convolution layers, and batch normalization layers,
    followed by one pooling layer.
    It is utilized in VGG network for image classifcation.
    prefix_num: the prefix number of the layer names.
                For example, if prefix_num = 1, the first convolutioal layer's
                name will be conv_1_1.
    num_layers: number of the convolutional layers.
    input: the name of the input layer.
    input_channels: the number of channels of the input feature map.
    output_channels: the number of channels of the output feature map.
    drop_rates: the drop rates of the BN layers. It will be all zero by default.
    strides: the stride of the convolution for the layers.
             It will be all 1 by  default.
    with_bn: whether to use Batch Normalization for Conv layers.
             By default,  it is all false.
    """
    if len(drop_rates) == 0: drop_rates = [0] * num_layers
    if len(strides) == 0: strides = [1] * num_layers
    if len(with_bn) == 0: with_bn = [False] * num_layers
    assert (len(drop_rates) == num_layers)
    assert (len(strides) == num_layers)

    for i in range(1, num_layers + 1):
        if i == 1:
            i_conv_in = input
        else:
            i_conv_in = group_output
        i_channels_conv = input_channels if i == 1 else output_channels
        conv_act = LinearActivation() if with_bn[i - 1] else ReluActivation()
        conv_output = img_conv_layer(name="conv%d_%d" % (prefix_num, i),
                                     input=i_conv_in,
                                     filter_size=3,
                                     num_channels=i_channels_conv,
                                     num_filters=output_channels,
                                     stride=strides[i - 1],
                                     padding=1,
                                     act=conv_act)
        if with_bn[i - 1]:
            bn = batch_norm_layer(name="conv%d_%d_bn" % (prefix_num, i),
                                  input=conv_output,
                                  num_channels=output_channels,
                                  act=ReluActivation(),
                                  layer_attr=get_extra_layer_attr(
                                      drop_rate=drop_rates[i - 1]))
            group_output = bn
        else:
            group_output = conv_output
    pool = img_pool_layer(name="pool%d" % prefix_num,
                          input=group_output,
                          pool_size=2,
                          num_channels=output_channels,
                          stride=2)
    return pool


def vgg_conv_net(image_size, num_classes, num_layers,
                 channels, strides, with_bn, fc_dims,
                 drop_rates, drop_rates_fc=[],
                 is_color=True, is_predict=False):
    """
    A Wrapper for a VGG network for image classification.
    It is a set of convolutional groups followed by several fully
    connected layers, and a cross-entropy classifiation loss.
    The detailed architecture of the paper can be found here:
      Very Deep Convolutional Networks for Large-Scale Visual Recognition
      http://www.robots.ox.ac.uk/~vgg/research/very_deep/
    image_size: image size.
    num_classes: num of classes.
    num_layers: the number of layers for all the convolution groups.
    channels: the number of output filters for all the convolution groups.
    with_bn: whether each layer of a convolution group is followed by a
    batch normalization.
    drop_rates: the dropout rates for all the convolutional layers.
    fc_dims: the dimension for all the fully connected layers.
    is_color: whether the input images are color.
    """
    data_input, label_input, num_image_channels = \
        image_data_layers(image_size, num_classes, is_color, is_predict)
    assert (len(num_layers) == len(channels))
    assert (len(num_layers) == len(strides))
    assert (len(num_layers) == len(with_bn))
    num_fc_layers = len(fc_dims)
    assert (num_fc_layers + 1 == len(drop_rates_fc))

    for i in range(len(num_layers)):
        input_layer = data_input if i == 0 else group_output
        input_channels = 3 if i == 0 else channels[i - 1]
        group_output = conv_layer_group(prefix_num=i + 1,
                                        num_layers=num_layers[i],
                                        input=input_layer,
                                        input_channels=input_channels,
                                        output_channels=channels[i],
                                        drop_rates=drop_rates[i],
                                        strides=strides[i],
                                        with_bn=with_bn[i])
    conv_output_name = group_output
    if drop_rates_fc[0] != 0.0:
        dropped_pool_name = "pool_dropped"
        conv_output_name = dropout_layer(name=dropped_pool_name,
                                         input=conv_output_name,
                                         dropout_rate=drop_rates_fc[0])
    for i in range(len(fc_dims)):
        input_layer_name = conv_output_name if i == 0 else fc_output
        active_type = LinearActivation() if i == len(
            fc_dims) - 1 else ReluActivation()
        drop_rate = 0.0 if i == len(fc_dims) - 1 else drop_rates_fc[i + 1]
        fc_output = fc_layer(name="fc%d" % (i + 1),
                             input=input_layer_name,
                             size=fc_dims[i],
                             act=active_type,
                             layer_attr=get_extra_layer_attr(drop_rate))
    bn = batch_norm_layer(name="fc_bn",
                          input=fc_output,
                          num_channels=fc_dims[len(fc_dims) - 1],
                          act=ReluActivation(),
                          layer_attr=get_extra_layer_attr(
                              drop_rate=drop_rates_fc[-1]))
    output = fc_layer(name="output",
                      input=bn,
                      size=num_classes,
                      act=SoftmaxActivation())
    if is_predict:
        outputs(output)
    else:
        cost = classification_cost(name="cost",
                                   input=output,
                                   label=label_input)
        outputs(cost)


def vgg16_conv_net(image_size, num_classes,
                   is_color=True, is_predict=False):
    """
    A Wrapper for a 16 layers VGG network for image classification.
    The detailed architecture of the paper can be found here:
      Very Deep Convolutional Networks for Large-Scale Visual Recognition
      http://www.robots.ox.ac.uk/~vgg/research/very_deep/
    image_size: image size.
    num_classes: num of classes.
    is_color: whether the input images are color.
    """
    vgg_conv_net(image_size, num_classes,
                 num_layers=[2, 2, 3, 3, 3],
                 channels=[64, 128, 256, 512, 512],
                 strides=[[], [], [], [], []],
                 with_bn=[[False, True], [False, True], [False, False, True], \
                          [False, False, True], [False, False, True]],
                 drop_rates=[[]] * 5,
                 drop_rates_fc=[0.0, 0.5, 0.5],
                 fc_dims=[4096, 4096],
                 is_predict=is_predict)


def small_vgg(data_conf,
              is_predict=False):
    """
    A Wrapper for a small VGG network for CIFAR-10 image classification.
    The detailed architecture of the paper can be found here:
      92.45% on CIFAR-10 in Torch
      http://torch.ch/blog/2015/07/30/cifar.html
    Due to the constraints of CuDNN, it only has four convolutional groups
    rather than five.
    Thus, it only achieves 91.2% test accuracy and 98.1% training accuracy.
    data_conf is a dictionary with the following keys:
        image_size: image size.
        num_classes: num of classes.
        is_color: whether the input images are color.
    """
    for k, v in data_conf.iteritems(): globals()[k] = v
    vgg_conv_net(image_size, num_classes,
                 num_layers=[2, 2, 3, 3],
                 channels=[64, 128, 256, 512],
                 strides=[[], [], [], []],
                 with_bn=[[True, True], [True, True], [True, True, True], \
                          [True, True, True]],
                 drop_rates=[[0.3, 0.0], [0.4, 0.0],
                             [0.4, 0.4, 0.0], [0.4, 0.4, 0.0]],
                 drop_rates_fc=[0.5, 0.5],
                 fc_dims=[512],
                 is_predict=is_predict)


def training_settings(learning_rate=0.1, batch_size=128, algorithm="sgd",
                      momentum=0.9, decay_rate=0.001):
    """
    Training settings.
    learning_rate: learning rate of the training.
    batch_size: the size of each training batch.
    algorithm: training algorithm, can be
       - sgd
       - adagrad
       - adadelta
       - rmsprop
    momentum: momentum of the training algorithm.
    decay_rate: weight decay rate.
    """
    Settings(algorithm=algorithm,
             batch_size=batch_size,
             learning_rate=learning_rate / float(batch_size))
    default_momentum(momentum)
    default_decay_rate(decay_rate * batch_size)