data_transform.cc 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/data_transform.h"
16

17 18
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
19
#include "paddle/phi/api/lib/utils/storage.h"
20 21 22
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/transfer_layout_kernel.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

#include "paddle/fluid/framework/data_device_transform.h"

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
40 41 42
  bool ret =
      input.GetType() == AllocationType::GPUPINNED ||
      (transform_flag.need_trans_backend() && target != Backend::ALL_BACKEND &&
43 44
       phi::TransToPhiBackend(input) !=
           (target != Backend::GPUDNN ? target : Backend::GPU));
45 46 47 48 49 50 51 52 53 54 55 56
  return ret;
}

inline bool NeedTransformLayout(const DataLayout& input,
                                const DataLayout& target,
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
  return ret;
}

57 58
inline phi::DenseTensor TransDataLayout(const phi::DenseTensor& tensor,
                                        DataLayout layout) {
59 60 61 62
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
63 64
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
    return phi::TransferLayout(*dev_ctx, tensor, layout);
65
  } else {
66
    PADDLE_THROW(phi::errors::PreconditionNotMet(
67 68 69 70 71
        "Unsupported data layout cast from CPU to GPU."));
  }
}

template <typename Context>
72 73 74
phi::DenseTensor CastDateType(const Context& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
75 76
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
77
      return phi::Cast<float>(dev_ctx, tensor, dtype);
78
    case DataType::FLOAT64:
79
      return phi::Cast<double>(dev_ctx, tensor, dtype);
80
    case DataType::INT32:
81
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
82
    case DataType::INT64:
83
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
84
    case DataType::FLOAT16:
85
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
86
    case DataType::BFLOAT16:
87
      return phi::Cast<phi::dtype::bfloat16>(dev_ctx, tensor, dtype);
88
    case DataType::BOOL:
89
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
90
    case DataType::INT16:
91
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
92
    case DataType::UINT8:
93
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
94
    default:
95
      PADDLE_THROW(phi::errors::Unimplemented(
96 97 98 99 100 101
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
102 103 104
phi::DenseTensor CastDateType(const phi::GPUContext& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
105 106
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
107
      return phi::Cast<float>(dev_ctx, tensor, dtype);
108
    case DataType::FLOAT64:
109
      return phi::Cast<double>(dev_ctx, tensor, dtype);
110
    case DataType::INT32:
111
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
112
    case DataType::INT64:
113
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
114
    case DataType::FLOAT16:
115
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
116
    case DataType::BOOL:
117
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
118
    case DataType::INT16:
119
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
120
    case DataType::UINT8:
121
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
122
    default:
123
      PADDLE_THROW(phi::errors::Unimplemented(
124 125 126 127 128 129
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

130 131
inline phi::DenseTensor TransDataType(const phi::DenseTensor& tensor,
                                      DataType dtype) {
132 133 134 135 136
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

137 138
  phi::DenseTensor out(
      phi::make_intrusive<paddle::experimental::SharedStorage>(tensor.place()),
139 140 141
      {dtype, tensor.dims(), tensor.layout()});

  if (platform::is_cpu_place(tensor.place())) {
142
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
143 144 145
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
146
    auto* dev_ctx = static_cast<phi::GPUContext*>(pool.Get(tensor.place()));
147 148 149
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
150
    PADDLE_THROW(phi::errors::Unimplemented(
151 152 153 154 155
        "Place type is not supported when casting data type."));
  }
  return out;
}

156 157 158 159
phi::DenseTensor TransformData(const phi::DenseTensor& tensor,
                               const phi::TensorArgDef& target_args_def,
                               const TransformFlag& transform_flag) {
  phi::DenseTensor out = tensor;
160 161 162 163 164 165 166 167 168 169 170 171
  if (NeedTransformLayout(
          tensor.layout(), target_args_def.layout, transform_flag)) {
    out = TransDataLayout(out, target_args_def.layout);
  }

  if (NeedTransformDataType(
          tensor.dtype(), target_args_def.dtype, transform_flag)) {
    out = TransDataType(out, target_args_def.dtype);
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
172
    phi::DenseTensor result;
173
    framework::TransDataDevice(
174
        out, phi::TransToPhiPlace(target_args_def.backend), &result);
175 176 177 178 179
    out = result;
  }
  return out;
}

180
std::shared_ptr<phi::DenseTensor> PrepareData(
181
    const Tensor& input,
182
    const phi::TensorArgDef& target_args_def,
183 184
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
Z
zyfncg 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  if (tensor_in) {
    phi::DenseTensor& dense_tensor =
        *static_cast<phi::DenseTensor*>(tensor_in.get());
    if (!transform_flag.NeedTransform() || !dense_tensor.initialized() ||
        (!NeedTransformPlace(
             dense_tensor.place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             dense_tensor.dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             dense_tensor.layout(), target_args_def.layout, transform_flag))) {
      return std::static_pointer_cast<phi::DenseTensor>(tensor_in);
    }
    phi::DenseTensor out =
        TransformData(dense_tensor, target_args_def, transform_flag);
    return std::make_shared<phi::DenseTensor>(std::move(out));
200
  }
Z
zyfncg 已提交
201
  return nullptr;
202 203
}

204 205 206 207 208 209 210 211 212 213
std::shared_ptr<phi::DenseTensor> PrepareData(
    const paddle::optional<Tensor>& input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input) {
    return PrepareData(*input, target_args_def, transform_flag);
  }
  return {nullptr};
}

H
hong 已提交
214 215 216 217 218 219 220 221 222 223 224
std::shared_ptr<phi::DenseTensor> PrepareData(
    const paddle::optional<const Tensor&> input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input.get_ptr() != nullptr) {
    return PrepareData(*(input.get_ptr()), target_args_def, transform_flag);
  }

  return {nullptr};
}

225
std::unique_ptr<std::vector<phi::DenseTensor>> PrepareData(
226
    const std::vector<Tensor>& inputs,
227
    const phi::TensorArgDef& target_args_def,
228
    const TransformFlag& transform_flag) {
229
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
230 231 232 233 234 235 236 237 238 239 240 241
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             tensor_in->layout(), target_args_def.layout, transform_flag))) {
      pt_tensors->emplace_back(
242
          *std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in));
243 244
    } else {
      pt_tensors->emplace_back(
245
          TransformData(*(static_cast<phi::DenseTensor*>(tensor_in.get())),
246 247 248 249 250 251 252 253 254 255
                        target_args_def,
                        transform_flag));
    }
  }

  return std::move(pt_tensors);
}

}  // namespace experimental
}  // namespace paddle