imdb.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
"""
D
dangqingqing 已提交
17

Y
Yi Wang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
import paddle.v2.dataset.common
import tarfile
import Queue
import re
import string
import threading

__all__ = ['build_dict', 'train', 'test']

URL = 'http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz'
MD5 = '7c2ac02c03563afcf9b574c7e56c153a'


# Read files that match pattern.  Tokenize and yield each file.
def tokenize(pattern):
    with tarfile.open(paddle.v2.dataset.common.download(URL, 'imdb',
                                                        MD5)) as tarf:
        # Note that we should use tarfile.next(), which does
        # sequential access of member files, other than
        # tarfile.extractfile, which does random access and might
        # destroy hard disks.
        tf = tarf.next()
        while tf != None:
            if bool(pattern.match(tf.name)):
                # newline and punctuations removal and ad-hoc tokenization.
                yield tarf.extractfile(tf).read().rstrip("\n\r").translate(
                    None, string.punctuation).lower().split()
            tf = tarf.next()


def build_dict(pattern, cutoff):
    word_freq = {}
    for doc in tokenize(pattern):
        for word in doc:
            paddle.v2.dataset.common.dict_add(word_freq, word)

    # Not sure if we should prune less-frequent words here.
    word_freq = filter(lambda x: x[1] > cutoff, word_freq.items())

    dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
    words, _ = list(zip(*dictionary))
    word_idx = dict(zip(words, xrange(len(words))))
    word_idx['<unk>'] = len(words)
    return word_idx


def reader_creator(pos_pattern, neg_pattern, word_idx, buffer_size):
    UNK = word_idx['<unk>']

    qs = [Queue.Queue(maxsize=buffer_size), Queue.Queue(maxsize=buffer_size)]

    def load(pattern, queue):
        for doc in tokenize(pattern):
            queue.put(doc)
        queue.put(None)

    def reader():
        # Creates two threads that loads positive and negative samples
        # into qs.
        t0 = threading.Thread(
            target=load, args=(
                pos_pattern,
                qs[0], ))
        t0.daemon = True
        t0.start()

        t1 = threading.Thread(
            target=load, args=(
                neg_pattern,
                qs[1], ))
        t1.daemon = True
        t1.start()

        # Read alternatively from qs[0] and qs[1].
        i = 0
        doc = qs[i].get()
        while doc != None:
            yield [word_idx.get(w, UNK) for w in doc], i % 2
            i += 1
            doc = qs[i % 2].get()

        # If any queue is empty, reads from the other queue.
        i += 1
        doc = qs[i % 2].get()
        while doc != None:
            yield [word_idx.get(w, UNK) for w in doc], i % 2
            doc = qs[i % 2].get()

    return reader()


def train(word_idx):
    return reader_creator(
        re.compile("aclImdb/train/pos/.*\.txt$"),
        re.compile("aclImdb/train/neg/.*\.txt$"), word_idx, 1000)


def test(word_idx):
    return reader_creator(
        re.compile("aclImdb/test/pos/.*\.txt$"),
        re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000)
H
hedaoyuan 已提交
119 120 121 122 123


def word_dict():
    return build_dict(
        re.compile("aclImdb/((train)|(test))/((pos)|(neg))/.*\.txt$"), 150)