async_executor_refactor.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/async_executor.h"
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <map>
#include <algorithm>
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

void CreateTensor(Variable* var, proto::VarType::Type var_type) {
  if (var_type == proto::VarType::LOD_TENSOR) {
    var->GetMutable<LoDTensor>();
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
    var->GetMutable<SelectedRows>();
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
    var->GetMutable<FeedFetchList>();
  } else if (var_type == proto::VarType::FETCH_LIST) {
    var->GetMutable<FeedFetchList>();
  } else if (var_type == proto::VarType::STEP_SCOPES) {
    var->GetMutable<std::vector<Scope>>();
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
    var->GetMutable<LoDRankTable>();
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
    var->GetMutable<LoDTensorArray>();
  } else if (var_type == proto::VarType::PLACE_LIST) {
    var->GetMutable<platform::PlaceList>();
  } else if (var_type == proto::VarType::READER) {
    var->GetMutable<ReaderHolder>();
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
  } else {
    PADDLE_THROW(
        "Variable type %d is not in "
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
        var_type);
  }
}

void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);
  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      CreateTensor(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      CreateTensor(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  local_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    local_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetDevice() {
  // at most 48 threads binding currently
  static unsigned priority[] = {
    0, 1, 2, 3, 4, 5,
    6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16, 17,
    18, 19, 20, 21, 22, 23,
    24, 25, 26, 27, 28, 29,
    30, 31, 32, 33, 34, 35,
    36, 37, 38, 39, 40, 41,
    42, 43, 44, 45, 46, 47
  };

  unsigned int i = this->thread_id_;

  if (i < sizeof(priority) / sizeof(unsigned)) {
    unsigned proc = priority[i];

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      LOG(ERROR) << "WARNING: Failed to set thread affinity for thread " << i;
    } else {
      CPU_ZERO(&mask);
      if ((0 == sched_getaffinity(0, sizeof(mask), &mask))
          && CPU_ISSET(proc, &mask)) {
        LOG(ERROR) << "TRACE: Thread " << i <<
            " is running on processor " << proc << "...";
      }
    }
  }
}

void ExecutorThreadWorker::TrainFiles() {
  // todo: configurable
  SetDevice();
  thread_reader_->Start();
  while (int cur_batch = thread_reader_->Next()) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }
    thread_scope_->DropKids();
  }
}

void ExecutorThreadWorker::SetThreadId(int tid) {
  thread_id_ = tid;
}

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

void ExecutorThreadWorker::SetMaxTrainingEpoch(int max_epoch) {
  max_epoch_ = max_epoch;
}

AsyncExecutor::AsyncExecutor(const platform::Place& place) : place_(place) {}

void AsyncExecutor::CreateThreads(const ExecutorThreadWorker* worker,
                                  const ProgramDesc& main_program,
                                  const DataFeed& reader,
                                  const Scope& root_scope,
                                  const int thread_index) {
  worker->SetThreadid(thread_index);
  worker->CreateThreadOperators(main_program);
  worker->CreateThreadScope(main_program);
  worker->SetDataFeed(reader);
  worker->BindingDataFeedMemory(reader);
  worker->SetMainProgram(main_program);
  worker->SetRootScope(root_scope);
}

197 198 199 200 201 202 203
shared_ptr<DataFeed> AsyncExecutor::CreateDataFeed(const char * feed_name) {
  if (g_datafeed_map.count(string(feed_name)) < 1) {
    return NULL;
  }
  return g_datafeed_map[feed_name]();
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
void AsyncExecutor::CheckFiles(
    const std::vector<std::string>& files) {
  // function for user to check file formats
  // should be exposed to users
}

/*
  in case there are binary files we want to train
  and in general this is the fastest way to train
  different calls allow thread_num to be different
  threads are created on the fly
  workers are created on the fly
  readers are created on the fly
  files are fed into readers on the fly
 */
/*
  class_name
  batch_size: max batch size
  use_slot: 
  queue_size: 
  buffer_size:
  padding_index: 
 */
void AsyncExecutor::RunFromFiles(
    const ProgramDesc& main_program,
    const DataFeedDesc& data_feed_desc,
    const std::vector<std::string> & files,
    const int thread_num) {
  // todo: remove fluid related interface
  root_scope_->DropKids();
  std::vector<std::thread> threads;
  threads.resize(thread_num);

  /*
    readerDesc: protobuf description for reader initlization
    argument: class_name, batch_size, use_slot, queue_size, buffer_size, padding_index
    
    reader: 
    1) each thread has a reader, reader will read input data and 
    put it into input queue
    2) each reader has a Next() iterface, that can fetch an instance
    from the input queue
   */
  // todo: should be factory method for creating datafeed
  std::vector<std::shared_ptr<DataFeed> > readers;
  readers.resize(thread_num);
  for (auto& reader : readers) {
    // create by factory name
    reader.reset(new DataFeed);
    reader.SetFileList(files);
  }

  std::vector<std::shared_ptr<ExecutorThreadWorker> > workers;
  workers.resize(thread_num);
  for (auto& worker : workers) {
    worker.reset(new ExecutorThreadWorker);
  }

  // prepare thread resource here
  for (int thidx = 0; thidx < thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program,
                  readers[thidx].get(), root_scope_, thidx);
  }
  
  // start executing ops in multiple threads
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    threads.push_back(std::thread(&ExecutorThreadWorker::TrainFiles,
                                  workers[thidx].get()));
  }

  for (auto& th : threads) {
    th.join();
  }
  // fetch variables in scope 0, and return
}

}   // einit_modelnd namespace framework
}   // end namespace paddle

/* vim: set expandtab ts=2 sw=2 sts=2 tw=100: */