fleet_base.py 47.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
import numpy as np
21
from paddle.fluid.framework import dygraph_only
22
from paddle.fluid import compiler
23
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
24
from .strategy_compiler import StrategyCompiler
25
from .distributed_strategy import DistributedStrategy
26 27
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
28
from paddle.fluid.wrapped_decorator import wrap_decorator
29
from paddle.fluid.dygraph import parallel_helper
30
from . import topology as tp
31
from .topology import ParallelMode
32
from ..meta_parallel import TensorParallel, model_parallel_random_seed
33
from ..meta_parallel import PipelineParallel
34
from ..meta_optimizers import HybridParallelOptimizer
35
from ..meta_optimizers import HybridParallelGradScaler
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


68
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
69
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
70 71


72 73 74
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
75
    Please reference the https://github.com/PaddlePaddle/FleetX for details
76 77 78 79 80


    Returns:
        Fleet: A Fleet instance

81
    Example for collective training:
1
123malin 已提交
82

83 84
        .. code-block:: python

1
123malin 已提交
85 86
            import paddle
            paddle.enable_static()
87
            import paddle.distributed.fleet as fleet
88 89 90

            fleet.init(is_collective=True)

91 92 93
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
94 95 96 97 98 99 100 101

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
102 103
            import paddle
            paddle.enable_static()
104 105
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
106
            fleet.init(strategy=strategy)
107

108
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
109
            optimizer = fleet.distributed_optimizer(optimizer)
110

111 112
            if fleet.is_first_worker():
                print("this is first worker")
113

114 115
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
116

117 118 119
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
120

121 122
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
123

124 125 126
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
127 128


129 130 131
    """

    def __init__(self):
132
        self._role_maker = None
133
        self.strategy_compiler = None
134
        self._is_collective = False
135
        self._runtime_handle = None
D
Dong Daxiang 已提交
136 137
        self._util = None
        self._context = {}
138

139
    def init(self, role_maker=None, is_collective=False, strategy=None):
140 141 142
        """
        Initialize role_maker in Fleet.

143 144 145 146 147 148 149 150 151 152 153
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
154 155 156 157
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
180
                role = fleet.PaddleCloudRoleMaker()
181
                fleet.init(role)
182

183 184 185 186 187 188
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
189
                fleet.init(strategy=strategy)
190

191
        """
S
ShenLiang 已提交
192 193 194
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
195 196

        if role_maker is None:
197 198 199 200 201 202
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
203 204
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
205
        else:
206 207
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
208
                self._is_collective = role_maker._is_collective
209 210 211 212
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
213
        self._role_maker._generate_role()
214

215 216 217
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

218
        self.strategy_compiler = StrategyCompiler()
219 220 221 222 223 224 225 226 227

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

228
        if paddle.fluid.framework.in_dygraph_mode():
229
            if self.worker_num() == 1:
230 231 232
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
233
                return
234 235 236 237
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
238 239 240 241 242 243 244 245 246
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
247
                paddle.distributed.init_parallel_env()
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
            hybrid_group_names=["data", "pipe", "model"],
            dims=[self.dp_degree, self.pp_degree, self.mp_degree])

        self._hcg = tp.HybridCommunicateGroup(self._topology)

283 284 285 286 287 288 289 290
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

291 292 293 294 295 296 297 298
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

299 300 301 302 303 304 305
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
306

307 308 309 310 311 312 313 314
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

315
        """
316
        return self._role_maker._is_first_worker()
317 318 319 320 321 322 323

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
324 325 326 327

        Examples:

            .. code-block:: python
1
123malin 已提交
328

329 330 331 332
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

333
        """
334
        return self._role_maker._worker_index()
335 336 337 338 339 340 341

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
342

343
        Examples:
1
123malin 已提交
344

345 346 347 348 349 350
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

351
        """
352
        return self._role_maker._worker_num()
353

354 355 356 357 358 359 360 361 362 363 364 365
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

366 367 368 369 370 371 372
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
373 374

        Examples:
1
123malin 已提交
375

376 377 378 379 380 381
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

382
        """
383
        return self._role_maker._is_worker()
384 385 386

    def worker_endpoints(self, to_string=False):
        """
387
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
388 389 390

        Returns:
            list/string: server endpoints
391 392

        Examples:
1
123malin 已提交
393

394 395 396 397 398 399
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

400 401
        """
        if to_string:
402
            return ",".join(self._role_maker._get_trainer_endpoints())
403
        else:
404
            return self._role_maker._get_trainer_endpoints()
405 406 407 408 409 410 411

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
412 413

        Examples:
1
123malin 已提交
414

415
            .. code-block:: python
1
123malin 已提交
416 417 418 419

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
420
        """
421
        return len(self._role_maker._get_pserver_endpoints())
422 423 424 425 426 427 428

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
429 430

        Examples:
1
123malin 已提交
431

432 433 434 435 436 437
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

438
        """
439
        return self._role_maker._server_index()
440 441 442 443 444 445 446

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
447 448

        Examples:
1
123malin 已提交
449

450 451 452 453 454 455
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

456
        """
457

458
        if to_string:
459
            return ",".join(self._role_maker._get_pserver_endpoints())
460
        else:
461
            return self._role_maker._get_pserver_endpoints()
462 463 464 465 466 467 468 469

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
470 471 472 473

        Examples:

            .. code-block:: python
1
123malin 已提交
474

475 476 477 478
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

479
        """
480
        return self._role_maker._is_server(
481
        ) or self._role_maker._is_heter_worker()
482 483 484

    def barrier_worker(self):
        """
485 486 487 488
        barrier all workers

        Returns:
            None
489
        """
490
        self._role_maker._barrier("worker")
491

492
    @is_non_distributed_check
493
    @inited_runtime_handler
494 495
    def init_worker(self):
        """
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

514 515 516
        """
        self._runtime_handle._init_worker()

517
    @is_non_distributed_check
518
    @inited_runtime_handler
519
    def init_server(self, *args, **kwargs):
520
        """
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

540
        """
541
        self._runtime_handle._init_server(*args, **kwargs)
542

543
    @is_non_distributed_check
544
    @inited_runtime_handler
545 546
    def run_server(self):
        """
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

565 566 567
        """
        self._runtime_handle._run_server()

568
    @is_non_distributed_check
569
    @inited_runtime_handler
570 571
    def stop_worker(self):
        """
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

589 590 591
        """
        self._runtime_handle._stop_worker()

T
tangwei12 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode)

635 636 637 638 639 640
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
641 642
                             export_for_deployment=True,
                             mode=0):
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
662 663 664
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
665

666 667
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
668
            export_for_deployment, mode)
669

670
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
671 672
        """

1
123malin 已提交
673
        saves all persistable tensors from :code:`main_program` to
674 675
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
676 677
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
678 679 680
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
681
            executor(Executor): The executor to run for saving persistable tensors.
682 683 684 685 686
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
687
            main_program(Program, optional): The program whose persistbale tensors will
688 689 690 691 692 693 694 695 696 697
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
698 699
                import paddle
                paddle.enable_static()
700 701 702 703 704 705 706
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
707 708
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
709 710

        """
T
tangwei12 已提交
711 712 713
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
714

715 716
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
717

718 719 720
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

721
    def distributed_optimizer(self, optimizer, strategy=None):
722
        """
723 724 725 726 727 728 729
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
730 731 732 733 734
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
735

736
        Returns:
737
            Fleet: instance of fleet.
738 739

        Examples:
740

741
            .. code-block:: python
742

1
123malin 已提交
743
                import paddle
744
                import paddle.distributed.fleet as fleet
1
123malin 已提交
745
                fleet.init(is_collective=True)
746 747 748 749
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

750 751
        """
        self.user_defined_optimizer = optimizer
752

753
        if strategy is not None:
T
tangwei12 已提交
754 755 756 757 758 759 760
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
761
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
762 763

        self._context = {}
S
ShenLiang 已提交
764 765

        if paddle.fluid.framework.in_dygraph_mode():
766 767 768 769 770
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
771 772
        return self

773
    @dygraph_only
774
    def distributed_model(self, model):
775
        """
776 777 778 779 780 781 782
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
783 784

        Examples:
785

786 787
            .. code-block:: python

788 789 790 791 792 793 794 795 796
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
797

798 799
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
800

1
123malin 已提交
801
                # 1. initialize fleet environment
802 803
                fleet.init(is_collective=True)

1
123malin 已提交
804
                # 2. create layer & optimizer
805 806 807 808 809
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
810
                # 3. get data_parallel model using fleet
811 812 813
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
814
                # 4. run layer
815 816 817 818 819 820 821 822 823 824 825 826
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

827

828
        """
829 830 831 832 833 834 835 836 837 838 839 840
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
        if self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
841 842
        elif self._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
            distributed_model = TensorParallel(
843
                model, self._hcg, strategy=self._user_defined_strategy)
844 845 846
        elif self._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
            distributed_model = PipelineParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
847
        return distributed_model
848 849 850 851 852

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
853
        (Only work in dygraph mode)
854 855 856 857 858 859 860

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

861 862 863 864 865
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
866

867
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
868
                a = paddle.to_tensor(value)
869

870 871
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
872

873 874 875
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
876 877 878 879 880 881 882 883
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
884
        (Only work in dygraph mode)
885 886 887 888

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

889 890
        Returns:
            None
891 892 893 894

        Examples:
            .. code-block:: python

895 896 897
                import numpy as np
                import paddle
                from paddle.distributed import fleet
898

899 900 901
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
902
                a = paddle.to_tensor(value)
903

904 905
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
906

907 908 909
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
910 911 912
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
913 914 915 916 917 918 919 920
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
921
        (Only work in dygraph mode)
922

923 924 925
        Args:
            value (float|Tensor): the value of learning rate

926 927
        Returns: 
            None 
928 929 930 931

        Examples:
            .. code-block:: python

932 933 934
                import numpy as np
                import paddle
                from paddle.distributed import fleet
935

936
                fleet.init(is_collective=True)
937

938
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
939
                a = paddle.to_tensor(value)
940

941 942
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
958 959 960 961 962 963 964 965
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
966
        (Only work in dygraph mode)
967 968 969 970 971

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
972

973 974
            .. code-block:: python

975 976 977 978 979
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
980

981
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
982
                a = paddle.to_tensor(value)
983

984 985
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
986

987 988
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
989

990 991
                lr = adam.get_lr()
                print(lr) # 0.01
992 993 994 995 996 997 998 999
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
1000
        (Only work in dygraph mode)
1001

1002 1003
        Returns:
            None
1004 1005

        Examples:
1
123malin 已提交
1006

1007 1008
            .. code-block:: python

1009 1010 1011
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1012

1013 1014 1015 1016 1017
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1018

1019 1020
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1021

1
123malin 已提交
1022
                # 1. initialize fleet environment
1023 1024
                fleet.init(is_collective=True)

1
123malin 已提交
1025
                # 2. create layer & optimizer
1026 1027 1028 1029 1030
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1031
                # 3. get data_parallel model using fleet
1032 1033 1034
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1035
                # 4. run layer
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
1056 1057
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
1058

1059 1060
        Returns: 
            None
1061 1062

        Examples:
1
123malin 已提交
1063

1064 1065
            .. code-block:: python

1066 1067 1068
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1069

1070 1071 1072 1073 1074
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1075

1076 1077
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1078

1
123malin 已提交
1079
                # 1. initialize fleet environment
1080 1081
                fleet.init(is_collective=True)

1
123malin 已提交
1082
                # 2. create layer & optimizer
1083 1084 1085 1086 1087
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1088
                # 3. get data_parallel model using fleet
1089 1090 1091
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1092
                # 4. run layer
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1126 1127
        """Return the real-time loss scaling factor.
        """
1128 1129 1130
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1191
        amp_optimizer = self._get_amp_optimizer()
1192
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1193

D
Dong Daxiang 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1221 1222 1223 1224 1225 1226 1227 1228 1229
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1230
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1231 1232 1233
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1234
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1235 1236
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1237
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1238 1239 1240 1241
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1242
            by minimize and a list of (param, grad) tensor pairs, param is
1243
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1244 1245
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1246 1247 1248
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1249

1250
            .. code-block:: python
1251

1252
                import paddle
1
123malin 已提交
1253
                paddle.enable_static()
1254
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1266

1
123malin 已提交
1267
                fleet.init(is_collective=True)
1268 1269 1270 1271
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1272

1273
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1274 1275

        """
D
Dong Daxiang 已提交
1276 1277 1278
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1279 1280 1281
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1282
            self._context = context
1283 1284
            return target_opt.minimize(loss)

1285 1286
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1287 1288
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1289 1290
        if startup_program == None:
            self.origin_startup_program = \
1291 1292
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1293 1294 1295
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1296

1297 1298
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1299 1300 1301 1302 1303

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1304

D
Dong Daxiang 已提交
1305 1306 1307
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1308 1309 1310 1311 1312 1313

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1314
        if copy_user_defined_strategy._is_strict_auto():
1315 1316
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1317
                opt._enable_strategy(copy_user_defined_strategy, context)
1318

1319 1320
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1321
        can_not_apply_optimizer_list = []
1322 1323 1324 1325
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1326
                                copy_user_defined_strategy)
1327 1328
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1329
            elif opt._can_apply() and opt._is_graph_out():
1330
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1331 1332
            else:
                can_not_apply_optimizer_list.append(opt)
1333
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1334
        meta_optimizer, graph_optimizer = \
1335 1336
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1337
                copy_user_defined_strategy, valid_optimizer_list,
1338
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1339

D
Dong Daxiang 已提交
1340
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1341 1342 1343
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1344

1345 1346 1347 1348 1349 1350
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1351
        self._context = context
1352

D
Dong Daxiang 已提交
1353
        self.valid_strategy = valid_strategy
1354
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1355

1356 1357
        optimize_ops = []
        params_grads = []
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1368
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1369

1370 1371
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1372
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1373

1374
            default_program = paddle.static.default_main_program()
1375 1376 1377 1378

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1379 1380
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1381
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1382

1383 1384
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1385

1386
        if graph_optimizer:
D
Dong Daxiang 已提交
1387
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1388
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1389 1390 1391 1392
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1393 1394 1395
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1396
        if self._runtime_handle is None:
1397
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1398

1399 1400
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1401 1402

        return optimize_ops, params_grads
1403 1404 1405 1406

    @dygraph_only
    def distributed_scaler(self, scaler):
        return HybridParallelGradScaler(scaler, self._hcg)