lookup_table_op.cc 9.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lookup_table_op.h"
H
Huihuang Zheng 已提交
16 17 18 19

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/var_type_inference.h"
22
#include "paddle/fluid/platform/bfloat16.h"
23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext* ctx) const override {
32 33 34
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "LookupTable");
    OP_INOUT_CHECK(ctx->HasInput("Ids"), "Input", "Ids", "LookupTable");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LookupTable");
Q
Qiao Longfei 已提交
35 36 37

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
38
    int ids_rank = ids_dims.size();
39
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
40 41
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
42 43 44 45 46
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
            table_dims.size(), table_dims));
47 48
    PADDLE_ENFORCE_EQ(
        ids_dims[ids_rank - 1], 1,
49 50 51 52
        platform::errors::InvalidArgument(
            "ShapeError: The last dimensions of the 'Ids' tensor must be 1. "
            "But received Ids's last dimensions = %d, Ids's shape = [%s].",
            ids_dims[ids_rank - 1], ids_dims));
53

54 55 56 57
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
58 59 60 61 62

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
63
  }
Y
Yu Yang 已提交
64

65
 protected:
66
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
67
      const framework::ExecutionContext& ctx) const override {
68
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
Q
qiaolongfei 已提交
69
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
70
  }
71 72 73 74
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
75
  void Make() override {
76
    AddInput("W",
C
chengduoZH 已提交
77
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
78
             "which is a learnable parameter.");
79
    AddInput("Ids",
80
             "An input with type int64 "
81
             "contains the ids to be looked up in W. "
82
             "The last dimension size must be 1.");
83
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
84
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
85
                  "(boolean, default false) "
C
chengduoZH 已提交
86
                  "Sparse update.")
C
chengduoZH 已提交
87
        .SetDefault(false);
88 89 90
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
91 92 93 94 95
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
96
        .SetDefault(kNoPadding);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    // for parameter training config
    AddAttr<bool>("remote_prefetch",
                  "pull sparse params from parameters, this can only be used "
                  "in distributed training")
        .SetDefault(false);

    AddAttr<std::string>("entry_config",
                         "embedding sparse feature entry config, "
                         " probability entry / counting "
                         " this can only be used in distributed training"
                         "entry")
        .SetDefault("");

    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training.")
        .SetDefault(false);

    AddAttr<std::string>("entry",
                         "(std::string, default "
                         ") for entry attribute.")
        .SetDefault("none");

    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the split table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
M
minqiyang 已提交
128 129 130 131
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
132 133 134 135
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
136
        .SetDefault({});
137 138 139
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
C
chengduoZH 已提交
140
    AddComment(R"DOC(
C
chengduoZH 已提交
141
Lookup Table Operator.
C
chengduoZH 已提交
142

C
chengduoZH 已提交
143
This operator is used to perform lookups on the parameter W,
144
then concatenated into a dense tensor.
145

146 147
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
148 149 150 151 152

)DOC");
  }
};

153
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableGradOpNoBufferVarsInferer, "W");
H
Huihuang Zheng 已提交
154

H
hong 已提交
155 156
template <typename T>
class LookupTableGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
157
 public:
H
hong 已提交
158
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
159 160

 protected:
161
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
162 163
    op->SetType("lookup_table_grad");

H
hong 已提交
164 165 166
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
H
Huihuang Zheng 已提交
167

H
hong 已提交
168
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
H
Huihuang Zheng 已提交
169

H
hong 已提交
170
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
171 172 173
  }
};

174 175 176 177
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

178
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
179 180
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
181
  }
Y
Yu Yang 已提交
182

183
 protected:
184
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
185
      const framework::ExecutionContext& ctx) const override {
186 187
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
Q
qiaolongfei 已提交
188
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
189
  }
190 191
};

192 193
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
194
  void operator()(framework::InferVarTypeContext* ctx) const override {
195
    auto out_var_name = framework::GradVarName("W");
M
minqiyang 已提交
196
    auto attr = ctx->GetAttr("is_sparse");
197
    bool is_sparse = BOOST_GET(bool, attr);
198
    if (is_sparse) {
M
minqiyang 已提交
199 200
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
201 202
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
203
    } else {
M
minqiyang 已提交
204 205
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
206
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
207
    }
208
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
209 210 211
  }
};

212 213 214 215
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
Huihuang Zheng 已提交
216
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
H
hong 已提交
217 218
                  ops::LookupTableGradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableGradOpMaker<paddle::imperative::OpBase>);
H
Huihuang Zheng 已提交
219

220
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
221
                  ops::LookupTableGradOpNoBufferVarsInferer,
222 223 224
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
225
                       ops::LookupTableKernel<double>,
226 227
                       ops::LookupTableKernel<int8_t>,
                       ops::LookupTableKernel<paddle::platform::bfloat16>);
228
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
229 230
                       ops::LookupTableGradKernel<double>,
                       ops::LookupTableGradKernel<paddle::platform::bfloat16>);
T
tangwei12 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243

/* ==========================  register checkpoint ===========================*/

REGISTER_OP_VERSION(lookup_table)
    .AddCheckpoint(
        R"ROC(
      Upgrade lookup_table add 1 attribute [entry_config].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "entry_config",
            "(std::string) embedding sparse feature entry config.", ""));

/* ========================================================================== */