pybind.cc 53.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89
bool IsCompiledWithBrpc() {
90
#ifndef PADDLE_WITH_DISTRIBUTE
91 92
  return false;
#endif
93 94 95 96 97 98

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
99 100
}

Y
update  
Yancey1989 已提交
101
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
102
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
103 104 105 106 107 108
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
109 110 111 112 113
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

114
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
115 116 117
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
118
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
119
  m.doc() = "C++ core of PaddlePaddle";
120

121 122 123 124
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

125
  BindException(&m);
Y
Yu Yang 已提交
126

S
sneaxiy 已提交
127
  m.def(
S
sneaxiy 已提交
128
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
129 130 131 132
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
133 134 135
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

136 137 138 139 140 141 142
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
143
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
144 145
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
146
      .def("_run_backward",
X
Xin Pan 已提交
147
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
148
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
149
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
150
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
151
      .def("_grad_ivar",
M
minqiyang 已提交
152
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
153
           py::return_value_policy::reference)
M
minqiyang 已提交
154
      .def("_copy_to",
P
Paddle CI 已提交
155
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
156 157 158 159 160
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
161
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
162
      .def("_copy_to",
P
Paddle CI 已提交
163
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
164 165 166 167 168
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
169
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
170
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
171
           py::return_value_policy::reference)
172 173 174 175 176 177 178 179 180 181 182 183
      .def_property("name",
                    [](const imperative::VarBase &self) { return self.name_; },
                    [](imperative::VarBase &self, const std::string &name) {
                      self.name_ = name;
                      LOG(ERROR) << "create ivar name " << self.name_;
                    })
      .def_property("block",
                    [](const imperative::VarBase &self) { return self.block_; },
                    [](imperative::VarBase &self, framework::BlockDesc *block) {
                      self.block_ = block;
                    },
                    py::return_value_policy::reference)
184 185 186 187 188 189
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
190 191 192
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
193
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
194
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
195
            self.SetStopGradient(stop_gradient);
196
          });
197

198
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
199
      .def(py::init<>())
200 201 202 203
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
204 205 206 207 208 209 210
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
211
          py::return_value_policy::reference)
M
minqiyang 已提交
212 213 214 215 216 217 218 219 220 221
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
222 223 224 225 226 227
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
228 229 230 231 232 233 234
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
235 236
          py::return_value_policy::reference);

X
Xin Pan 已提交
237
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
238
  layer.def(py::init<>())
X
Xin Pan 已提交
239 240 241
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
242
      });
X
Xin Pan 已提交
243

X
polish  
Xin Pan 已提交
244
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
245
      .def(py::init<>())
X
Xin Pan 已提交
246 247
      .def_static(
          "apply",
X
Xin Pan 已提交
248
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
249 250 251 252
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
253 254 255 256 257
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
258

259 260
  BindTracer(&m);

261 262 263
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
264
      .def("_get_dims",
265
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
266
      .def("_set_dims",
Q
qijun 已提交
267
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
268
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
269
           })
Y
yuyang18 已提交
270
      .def("_set_layout",
D
dzhwinter 已提交
271 272 273
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
274
      .def("_alloc_float",
D
dzhwinter 已提交
275
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
276
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
277
           })
Y
yuyang18 已提交
278
      .def("_alloc_float",
Y
Yu Yang 已提交
279
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
280
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
281
           })
Y
yuyang18 已提交
282
      .def("_alloc_int",
Y
Yu Yang 已提交
283
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
284
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
285
           })
Y
yuyang18 已提交
286
      .def("_alloc_int",
D
dzhwinter 已提交
287
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
288
             self.mutable_data<int>(place);
Q
qijun 已提交
289
           })
Y
yuyang18 已提交
290
      .def("_alloc_int",
C
chengduoZH 已提交
291 292 293
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
294
      .def("_alloc_float",
C
chengduoZH 已提交
295 296 297
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
298 299
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
300
      .def("set", PyCPUTensorSetFromArray<double>)
301
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
302
      .def("set", PyCPUTensorSetFromArray<bool>)
303
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
304
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
305
      .def("set", PyCPUTensorSetFromArray<int8_t>)
306
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
307 308
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
309
      .def("set", PyCUDATensorSetFromArray<double>)
310
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
311
      .def("set", PyCUDATensorSetFromArray<bool>)
312
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
313
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
314
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
315 316 317 318 319 320
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
321
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
322
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
323
#endif
324
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
325 326 327 328
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
329
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
330
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
331

X
Xin Pan 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
345
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
346
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
347
     columns, hence [5, 2].
X
Xin Pan 已提交
348 349 350

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
351 352
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
376 377
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
378 379 380 381 382 383 384 385 386 387 388 389 390 391
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
392
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
393 394 395 396 397
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
398
      .def("set_lod",
399
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
400
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
401
             LoD new_lod;
402 403
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
404 405
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
406
             self.set_lod(new_lod);
S
sneaxiy 已提交
407 408 409 410 411 412 413
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
429 430 431 432
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
433
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
434 435
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
436 437

           Args:
438
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
439
           )DOC")
440 441 442 443 444 445 446 447
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
448 449 450 451 452 453 454
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
455
      // Set above comments of set_lod.
456 457 458 459 460 461 462 463
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
464 465 466 467 468
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
469
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
483

Q
qijun 已提交
484 485 486 487 488 489 490 491 492 493 494
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
495 496
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
497 498
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
499 500 501 502 503 504 505 506 507
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
508
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
509
      .def("rows", [](SelectedRows &self) {
510 511 512 513 514
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
515
      });
Q
qijun 已提交
516

517
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
518 519 520

All parameter, weight, gradient are variables in Paddle.
)DOC")
521
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
522
      .def("set_int",
523 524
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
525 526 527 528 529 530 531
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
532
      .def("get_tensor",
533 534
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
535 536
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
537 538 539
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
540 541 542 543 544
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
545 546 547
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
548
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
549 550 551 552 553
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
554
#endif
Y
Refine  
Yu Yang 已提交
555 556 557 558 559
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
560
           py::return_value_policy::reference);
561

Y
Refine  
Yu Yang 已提交
562
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
563
      .def("start", &framework::ReaderHolder::Start)
564
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
565

S
sneaxiy 已提交
566 567 568 569
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
570 571
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
572
      .def("push",
S
sneaxiy 已提交
573
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
574
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
575
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
576
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
577
           })
S
sneaxiy 已提交
578 579 580 581
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
582

S
sneaxiy 已提交
583
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
584 585 586 587 588 589
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
590
        py::return_value_policy::copy);
S
sneaxiy 已提交
591

S
sneaxiy 已提交
592
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
612 613
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
614
      .def("var",
615
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
616
             return self.Var(name);
Y
Yu Yang 已提交
617
           },
S
sneaxiy 已提交
618 619
           py::arg("name"),
           R"DOC(
620
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
621

622
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
623
           current scope, the variable would be created. Otherwise,
624
           return the existing variable.
S
sneaxiy 已提交
625 626

           Args:
627 628
               name (str): the variable name.

S
sneaxiy 已提交
629
           Returns:
630
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
631 632 633 634
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
635
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
636
           its parent scope. Return None if not found.
637

S
sneaxiy 已提交
638 639
           Args:
               name (str): the variable name.
640

S
sneaxiy 已提交
641
           Returns:
642
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
643
           )DOC",
644
           py::return_value_policy::reference)
645
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
646 647 648 649 650 651
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
652
           py::return_value_policy::reference)
S
sneaxiy 已提交
653 654 655 656
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
657

S
sneaxiy 已提交
658 659 660 661 662 663
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
664 665
        R"DOC(
        Create a new scope.
666

S
sneaxiy 已提交
667 668 669
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
670 671
        py::return_value_policy::reference);

Y
Yu Yang 已提交
672 673
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
674 675
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
676 677 678 679 680 681 682 683 684 685
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
686 687
    return ret_values;
  });
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
704
  m.def("prune", [](const ProgramDesc &origin,
705
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
706
    ProgramDesc prog_with_targets(origin);
707
    for (const auto &t : targets) {
708
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
709
    }
710
    proto::ProgramDesc pruned_desc;
711
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
712
    return new ProgramDesc(pruned_desc);
713
  });
714 715 716 717
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
718 719 720
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
721 722
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
723
  // clang-format off
Y
Yu Yang 已提交
724
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
725 726
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
727
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
728 729 730
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
731
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
732
                      -> paddle::platform::DeviceContext* {
733
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
734
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
735
#else
Q
qijun 已提交
736
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
737
#endif
C
chengduoZH 已提交
738 739 740 741 742 743 744 745 746 747 748
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
749
// clang-format on
P
peizhilin 已提交
750
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
751 752
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
753
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
754 755 756 757 758 759 760 761 762 763 764 765
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
766 767 768 769 770
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
771
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
772

773 774
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
775 776 777 778 779
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
780
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
781

C
chengduoZH 已提交
782
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
783
      .def("__init__",
S
sneaxiy 已提交
784
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
785 786 787
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
788
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
789
           })
S
sneaxiy 已提交
790 791 792 793 794 795 796
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
797 798
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
799 800
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
801 802 803 804
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
805 806 807 808 809 810
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
811 812 813 814 815
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
816
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
817
             self = gpu_place;
C
chengduoZH 已提交
818 819
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
820 821
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
822
      });
Y
Yu Yang 已提交
823

Y
Yu Yang 已提交
824 825 826
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
827
                    proto::OpDesc desc;
Y
Yu Yang 已提交
828 829 830 831 832
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
833
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
834
                  })
835
      .def("run",
836
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
837 838 839
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
840
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
841 842 843 844 845
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
846 847 848 849 850 851 852
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
853 854
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
855
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
856
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
857 858 859 860
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
861

F
fengjiayi 已提交
862
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
863
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
864
      .def("close", &Executor::Close)
S
sneaxiy 已提交
865 866 867 868 869
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
870

D
dzhwinter 已提交
871
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
872
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
873 874
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
875

876
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
877
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
878
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
879 880 881 882 883 884
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
885

886
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
887
  m.def("get_fetch_variable", framework::GetFetchVariable);
888
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
889

X
Xin Pan 已提交
890 891
  m.def("_is_program_version_supported", IsProgramVersionSupported);

892 893 894 895 896
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
897

Y
Yu Yang 已提交
898 899 900 901 902 903 904 905 906
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
907
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
908 909
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
910 911 912 913 914 915 916 917 918 919
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
920 921 922 923 924 925 926
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
927

D
dzhwinter 已提交
928 929 930
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
931
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
932
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
933
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
934

P
peizhilin 已提交
935
#ifndef _WIN32
D
dangqingqing 已提交
936 937 938
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
939
#endif
P
peizhilin 已提交
940
#endif
Y
Yu Yang 已提交
941

942 943 944 945
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
946
      .value("kAll", platform::ProfilerState::kAll)
947 948 949 950 951 952 953 954 955 956 957 958 959
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
960
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
961
  m.def("reset_profiler", platform::ResetProfiler);
962
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
963 964 965
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
966

967 968
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
969
      .def("has", &ir::Pass::Has)
970 971 972
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
973
           })
974
      .def(
975
          "set",
976 977 978
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
979 980
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
981 982 983 984
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
985
        optim_graph.release();
F
flame 已提交
986
      });
987

X
fix  
Xin Pan 已提交
988 989
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1004
  // -- python binds for parallel executor.
Y
yuyang18 已提交
1005
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1006 1007 1008 1009
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1021 1022 1023

        )DOC");

Y
yuyang18 已提交
1024
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1025 1026 1027 1028 1029
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1040
      .def_property(
1041 1042 1043 1044
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1045 1046 1047 1048
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1049 1050 1051 1052 1053
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1054 1055 1056 1057
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1058 1059 1060 1061 1062 1063 1064
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1076 1077 1078 1079 1080 1081
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1082

Y
yuyang18 已提交
1083
  exec_strategy.def_property(
Y
yuyang18 已提交
1084 1085 1086 1087 1088 1089 1090
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1091 1092
      });

C
chengduo 已提交
1093 1094 1095 1096
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1108
)DOC");
Y
yuyang18 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1125
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1126
            self.reduce_ = strategy;
C
chengduo 已提交
1127 1128 1129 1130 1131 1132 1133
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1134 1135 1136 1137 1138
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1139
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1140
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1141 1142 1143 1144 1145 1146
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1147 1148 1149 1150
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1151
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1152
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1153 1154 1155 1156
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1157 1158 1159 1160 1161 1162
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1163
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1173
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1174 1175
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1176
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1177 1178 1179 1180 1181 1182
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1195 1196 1197 1198 1199 1200
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1201
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1202 1203 1204 1205 1206
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1221 1222 1223 1224
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1225 1226 1227 1228
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1229
      .def_property(
D
dzhwinter 已提交
1230 1231 1232
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1233
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1234
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1235 1236 1237 1238 1239
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1240 1241 1242

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1243
                  const std::string &, Scope *, std::vector<Scope *> &,
1244
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1245 1246 1247 1248
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1249 1250 1251 1252 1253
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1254 1255 1256 1257
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1258 1259 1260 1261 1262 1263
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1264

1265
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1266
  BindAsyncExecutor(&m);
F
flame 已提交
1267 1268
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1269
  BindInferenceApi(&m);
L
Luo Tao 已提交
1270
}
1271
}  // namespace pybind
1272
}  // namespace paddle