data_dispatch.html 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>训练数据的存储和分发 &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
78
          <li><a href="/">Home</a></li>
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/concepts/use_concepts_cn.html">基本使用概念</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
145
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>训练数据的存储和分发</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="">
<span id="id1"></span><h1>训练数据的存储和分发<a class="headerlink" href="#" title="永久链接至标题"></a></h1>
<div class="section" id="">
<span id="id2"></span><h2>流程介绍<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>生产环境中的训练数据集通常体积很大,并被存储在诸如Hadoop HDFS,Ceph,AWS S3之类的分布式存储之上。这些分布式存储服务通常会把数据切割成多个分片分布式的存储在多个节点之上。这样就可以在云端执行多种数据类计算任务,包括:</p>
<ul class="simple">
<li>数据预处理任务</li>
<li>Paddle训练任务</li>
<li>在线模型预测服务</li>
</ul>
<p><img src="src/paddle-cloud-in-data-center.png" width="500"/></p>
<p>在上图中显示了在一个实际生产环境中的应用(人脸识别)的数据流图。生产环境的日志数据会通过实时流的方式(Kafka)和离线数据的方式(HDFS)存储,并在集群中运行多个分布式数据处理任务,比如流式数据处理(online data process),离线批处理(offline data process)完成数据的预处理,提供给paddle作为训练数据。用于也可以上传labeled data到分布式存储补充训练数据。在paddle之上运行的深度学习训练输出的模型会提供给在线人脸识别的应用使用。</p>
</div>
<div class="section" id="">
<span id="id3"></span><h2>训练数据的存储<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
201
<p>选择CephFS作为训练数据的存储服务。</p>
202
<p>在Kubernetes上运行的不同的计算框架,可以通过Volume或PersistentVolume挂载存储空间到每个容器中。</p>
203
<p>在CephFS存储系统中的公开目录,需要保存一些预置的公开数据集(比如MNIST, BOW, ImageNet数据集等),并且可以被提交的job直接使用。</p>
204 205
</div>
<div class="section" id="">
206 207 208 209 210 211 212 213
<span id="id4"></span><h2>文件预处理<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>在数据集可以被训练之前,文件需要预先被转换成PaddlePaddle集群内部的存储格式(SSTable)。我们提供两个转换方式:</p>
<ul class="simple">
<li>提供给用户本地转换的库,用户可以编写程序完成转换。</li>
<li>用户可以上传自己的数据集,在集群运行MapReduce job完成转换。</li>
</ul>
<p>转换生成的文件名会是以下格式:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>name_prefix-aaaaa-of-bbbbb
214 215
</pre></div>
</div>
216 217 218 219 220 221
<p>&#8220;aaaaa&#8221;&#8221;bbbbb&#8221;都是五位的数字,每一个文件是数据集的一个shard,&#8221;aaaaa&#8221;代表shard的index,&#8221;bbbbb&#8221;代表这个shard的最大index。</p>
<p>比如ImageNet这个数据集可能被分成1000个shard,它们的文件名是:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>imagenet-00000-of-00999
imagenet-00001-of-00999
...
imagenet-00999-of-00999
222 223
</pre></div>
</div>
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
<div class="section" id="">
<span id="id5"></span><h3>转换库<a class="headerlink" href="#" title="永久链接至标题"></a></h3>
<p>无论是在本地或是云端转换,我们都提供Python的转换库,接口是:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">convert</span><span class="p">(</span><span class="n">output_path</span><span class="p">,</span> <span class="n">reader</span><span class="p">,</span> <span class="n">num_shards</span><span class="p">,</span> <span class="n">name_prefix</span><span class="p">)</span>
</pre></div>
</div>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">output_path</span></code>: directory in which output files will be saved.</li>
<li><code class="docutils literal"><span class="pre">reader</span></code>: a <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md#data-reader-interface">data reader</a>, from which the convert program will read data instances.</li>
<li><code class="docutils literal"><span class="pre">num_shards</span></code>: the number of shards that the dataset will be partitioned into.</li>
<li><code class="docutils literal"><span class="pre">name_prefix</span></code>: the name prefix of generated files.</li>
</ul>
<p><code class="docutils literal"><span class="pre">reader</span></code>每次输出一个data instance,这个instance可以是单个值,或者用tuple表示的多个值:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">yield</span> <span class="mi">1</span> <span class="c1"># 单个值</span>
<span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">28</span><span class="o">*</span><span class="mi">28</span><span class="p">)</span> <span class="c1"># 单个值</span>
<span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">28</span><span class="o">*</span><span class="mi">28</span><span class="p">),</span> <span class="mi">0</span> <span class="c1"># 多个值</span>
</pre></div>
</div>
<p>每个值的类型可以是整形、浮点型数据、字符串,或者由它们组成的list,以及numpy.ndarray。如果是其它类型,会被Pickle序列化成字符串。</p>
</div>
</div>
<div class="section" id="">
<span id="id6"></span><h2>示例程序<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<div class="section" id="">
<span id="id7"></span><h3>使用转换库<a class="headerlink" href="#" title="永久链接至标题"></a></h3>
<p>以下<code class="docutils literal"><span class="pre">reader_creator</span></code>生成的<code class="docutils literal"><span class="pre">reader</span></code>每次输出一个data instance,每个data instance包涵两个值:numpy.ndarray类型的值和整型的值:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator</span><span class="p">():</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">28</span><span class="o">*</span><span class="mi">28</span><span class="p">),</span> <span class="mi">0</span> <span class="c1"># 多个值</span>
    <span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">reader_creator</span></code>生成的<code class="docutils literal"><span class="pre">reader</span></code>传入<code class="docutils literal"><span class="pre">convert</span></code>函数即可完成转换:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">convert</span><span class="p">(</span><span class="s2">&quot;./&quot;</span><span class="p">,</span> <span class="n">reader_creator</span><span class="p">(),</span> <span class="mi">100</span><span class="p">,</span> <span class="n">random_images</span><span class="p">)</span>
</pre></div>
</div>
<p>以上命令会在当前目录下生成100个文件:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>random_images-00000-of-00099
random_images-00001-of-00099
...
random_images-00099-of-00099
266 267 268
</pre></div>
</div>
</div>
269 270 271 272 273
<div class="section" id="">
<span id="id8"></span><h3>进行训练<a class="headerlink" href="#" title="永久链接至标题"></a></h3>
<p>PaddlePaddle提供专用的<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md#python-data-reader-design-doc">data reader creator</a>,生成给定SSTable文件对应的data reader。<strong>无论在本地还是在云端,reader的使用方式都是一致的</strong></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># ...</span>
<span class="n">reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">creator</span><span class="o">.</span><span class="n">SSTable</span><span class="p">(</span><span class="s2">&quot;/home/random_images-*-of-*&quot;</span><span class="p">)</span>
274 275 276 277
<span class="n">batch_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">mnist</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="mi">128</span><span class="p">)</span>
<span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">batch_reader</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
278
<p>以上代码的reader输出的data instance与生成数据集时,reader输出的data instance是一模一样的。</p>
279 280
</div>
</div>
281 282 283 284 285 286 287 288
<div class="section" id="">
<span id="id9"></span><h2>上传训练文件<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>使用下面命令,可以把本地的数据上传到存储集群中。</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>paddle cp filenames pfs://home/folder/
</pre></div>
</div>
<p>比如,把之前示例中转换完毕的random_images数据集上传到云端的<code class="docutils literal"><span class="pre">/home/</span></code>可以用以下指令:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>paddle cp random_images-*-of-* pfs://home/
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
</pre></div>
</div>
</div>
</div>
<div class="section" id="todo">
<span id="todo"></span><h1>TODO<a class="headerlink" href="#todo" title="永久链接至标题"></a></h1>
<div class="section" id="job">
<span id="job"></span><h2>支持用户自定义的数据预处理job<a class="headerlink" href="#job" title="永久链接至标题"></a></h2>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
335 336
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>