pybind.cc 12.0 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
26
#include "paddle/pybind/tensor_py.h"
27
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
28 29 30 31
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

32 33
namespace py = pybind11;

34
USE_OP(add);
35
USE_OP(onehot_cross_entropy);
F
fengjiayi 已提交
36
USE_OP(sgd);
Q
qijun 已提交
37
USE_OP(mul);
38
USE_OP(elementwise_mul);
L
liaogang 已提交
39
USE_OP(mean);
Q
qijun 已提交
40 41 42
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
43
USE_OP(fill_zeros_like);
44
USE_NO_KERNEL_OP(recurrent);
45
USE_OP(gaussian_random);
Y
Yu Yang 已提交
46
USE_OP(uniform_random);
47
USE_OP(lookup_table);
Y
Yu Yang 已提交
48
USE_OP(scale);
49
USE_NO_KERNEL_OP(identity);
Y
Yu Yang 已提交
50
USE_OP(minus);
X
Xinghai Sun 已提交
51
USE_OP(cos_sim);
Z
zchen0211 已提交
52
USE_CPU_ONLY_OP(gather);
W
wanghaoshuang 已提交
53
USE_OP(pad);
Z
zchen0211 已提交
54
USE_CPU_ONLY_OP(scatter);
W
wanghaoshuang 已提交
55
USE_OP(crop);
56
USE_CPU_ONLY_OP(concat);
武毅 已提交
57
USE_OP(top_k);
58
USE_OP(squared_l2_distance);
59
USE_OP(sum);
Y
Yibing Liu 已提交
60
USE_OP(reshape);
61

62 63
namespace paddle {
namespace framework {
D
dongzhihong 已提交
64 65

using Tensor = framework::Tensor;
66 67
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
D
dongzhihong 已提交
68

69 70 71 72 73
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
74 75 76 77 78 79 80 81
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

82
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
83
  py::module m("core", "C++ core of PaddlePaddle");
84

85 86 87
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
88
      .def("get_dims",
89
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
90
      .def("set_dims",
Q
qijun 已提交
91
           [](Tensor &self, const std::vector<int64_t> &dim) {
92
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
93 94
           })
      .def("alloc_float",
Y
Yu Yang 已提交
95
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
96
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
97
           })
Q
qijun 已提交
98
      .def("alloc_float",
Y
Yu Yang 已提交
99
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
101 102
           })
      .def("alloc_int",
Y
Yu Yang 已提交
103
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
105
           })
Q
qijun 已提交
106
      .def("alloc_int",
Y
Yu Yang 已提交
107
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
108
             self.mutable_data<int>(place);
Q
qijun 已提交
109
           })
Y
Yu Yang 已提交
110 111
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
112
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
113 114
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
115
#endif
116
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
117
      .def("set_float_element",
118
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
119
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
120 121
             self.data<float>()[offset] = f;
           })
122
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
123
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
124 125
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
126

127
  py::class_<LoDTensor>(m, "LoDTensor", R"DOC(LoD(Leval of Ddetails) Tensor.
D
dangqingqing 已提交
128

129
The tensor and LoD info should be created before creating the LoDTensor, then
D
dangqingqing 已提交
130 131 132
call the set_tensor and set_lod functions to set them.

)DOC")
133 134 135 136 137 138 139 140 141 142 143 144 145
      .def("__init__",
           [](LoDTensor &instance,
              const std::vector<std::vector<size_t>> &lod,
              Tensor *t) {
#ifdef PADDLE_ONLY_CPU
             new (&instance) LoDTensor(lod, t);
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             new (&instance) LoDTensor(new_lod, t);
#endif
           })
D
dangqingqing 已提交
146
      .def("set_tensor",
147
           [](LoDTensor &self, Tensor *tensor) { self.set_tensor(tensor); })
D
dangqingqing 已提交
148
      .def("set_lod",
149
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
150
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
151
             self.set_lod(lod);
152 153 154 155 156 157
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
158
           })
159 160
      .def("tensor",
           [](LoDTensor &self) -> Tensor & { return self.tensor(); },
D
dangqingqing 已提交
161
           py::return_value_policy::reference)
162 163
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
164
        return self.lod();
165 166 167 168 169 170 171 172 173 174 175 176 177 178
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
               [](paddle::framework::Vector<size_t> item) ->
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
179 180
      });

181
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
182 183 184

All parameter, weight, gradient are variables in Paddle.
)DOC")
185
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
186
      .def("set_int",
187 188
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
189
      .def("get_tensor",
190
           [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
Y
Yan Chunwei 已提交
191
           py::return_value_policy::reference)
D
dangqingqing 已提交
192
      .def("get_lod_tensor",
193 194
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
195 196
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
197
      .def("get_net",
D
dongzhihong 已提交
198 199
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
200
           },
Y
Yu Yang 已提交
201
           py::return_value_policy::reference);
202

203
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
204
      .def("new_var",
205
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
206 207
             return self.NewVar(name);
           },
208
           py::return_value_policy::reference)
209
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
210
      .def(py::init<>())
211 212
      .def("new_scope",
           [](Scope &self) -> Scope * { return &self.NewScope(); },
213
           py::return_value_policy::reference)
214
      .def("drop_kids", &Scope::DropKids);
215

Y
Yu Yang 已提交
216 217
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
218 219
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
220 221 222 223

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
224
      std::string str;
Y
Yu Yang 已提交
225
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
226
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
227 228
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
229 230
    return ret_values;
  });
231 232 233
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
234 235
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
236
  // clang-format off
Y
Yu Yang 已提交
237
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
238 239
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
240
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
241 242 243 244 245
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
246
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
247
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
248
#else
Q
qijun 已提交
249
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
250
#endif
Q
qijun 已提交
251
                  });
Q
qijun 已提交
252
  // clang-format on
Q
qijun 已提交
253

254 255 256
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
257

258 259 260
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
261

Y
Yu Yang 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
      .def("infer_shape", &OperatorBase::InferShape)
      .def("run", &OperatorBase::Run)
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
287 288
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
289
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
290
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
291 292 293 294
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
295

Y
Yu Yang 已提交
296 297 298 299 300 301 302
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
303 304 305 306
      .def("append_op",
           [](operators::NetOp &self, const OperatorBase &op) {
             self.AppendOp(op);
           })
D
dongzhihong 已提交
307 308 309 310
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
311

Y
Yan Chunwei 已提交
312
  // recurrent_op
Y
Yu Yang 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
326 327 328
      .def("set_stepnet",
           [](operators::RecurrentOp &self, const operators::NetOp &net)
               -> void { self.set_stepnet(net.Clone()); });
Y
Yan Chunwei 已提交
329

330 331
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
332 333
  m.def("is_compile_gpu", IsCompileGPU);

334
  return m.ptr();
L
Luo Tao 已提交
335
}
336 337
}  // namespace framework
}  // namespace paddle