test_model.py 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
C
cnn 已提交
28
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
Y
yukavio 已提交
36 37
import paddle.vision.models as models
import paddle.fluid.dygraph.jit as jit
38
from paddle.io import DistributedBatchSampler, Dataset
39
from paddle.hapi.model import prepare_distributed_context
40 41
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
42 43


44
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
45
    def __init__(self, num_classes=10):
46 47 48
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
C
cnn 已提交
49
            Conv2D(
50
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
51
            ReLU(),
52
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
C
cnn 已提交
53
            Conv2D(
54
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
55
            ReLU(),
56
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))
57 58 59

        if num_classes > 0:
            self.fc = Sequential(
L
LielinJiang 已提交
60
                Linear(400, 120), Linear(120, 84), Linear(84, 10))
61 62 63 64 65 66 67 68 69 70

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
class ModelInner(paddle.nn.Layer):
    def __init__(self):
        super(ModelInner, self).__init__()
        self.fc = paddle.nn.Linear(3, 4)

    def forward(self, x):
        y = self.fc(x)
        return y, 0


class ModelOutter(paddle.nn.Layer):
    def __init__(self):
        super(ModelOutter, self).__init__()
        self.module1 = ModelInner()
        self.module2 = paddle.nn.Linear(4, 5)

    def forward(self, x):
        y, dummpy = self.module1(x)
        y = self.module2(y)
        return y, 3


93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class LeNetListInput(LeNetDygraph):
    def forward(self, inputs):
        x = inputs[0]
        x = self.features(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs[1])
        return x


class LeNetDictInput(LeNetDygraph):
    def forward(self, inputs):
        x = self.features(inputs['x1'])

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs['x2'])
        return x


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
146
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
J
Jiangxinz 已提交
172
            cls().skipTest('module not tested when ONLY_CPU compling')
173
        cls.device = paddle.set_device('gpu')
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
C
cnn 已提交
190
        paddle.seed(seed)
L
Leo Chen 已提交
191
        paddle.framework.random._manual_program_seed(seed)
192 193 194 195 196 197 198

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

199 200
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

218 219 220 221 222 223
    def test_fit_dynamic_with_tuple_input(self):
        self.fit_with_tuple_input(True)

    def test_fit_static_with_tuple_input(self):
        self.fit_with_tuple_input(False)

224 225 226 227 228 229
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

230 231 232 233 234 235
    def test_fit_dynamic_with_num_iters(self):
        self.fit(True, num_iters=1)

    def test_fit_static_with_num_iters(self):
        self.fit(False, num_iters=1)

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

251
    def fit(self, dynamic, num_replicas=None, rank=None, num_iters=None):
252 253
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
254
        paddle.seed(seed)
L
Leo Chen 已提交
255
        paddle.framework.random._manual_program_seed(seed)
256

L
LielinJiang 已提交
257
        net = LeNet()
258
        optim_new = fluid.optimizer.Adam(
259 260
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
261 262
        model.prepare(
            optim_new,
263
            loss=CrossEntropyLoss(reduction="sum"),
264
            metrics=Accuracy())
265 266 267 268 269
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

270 271 272 273 274 275 276 277
        model.fit(self.train_dataset,
                  batch_size=64,
                  shuffle=False,
                  num_iters=num_iters)

        result = model.evaluate(
            self.val_dataset, batch_size=64, num_iters=num_iters)

278
        train_sampler = DistributedBatchSampler(
279 280 281 282 283
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
284
        val_sampler = DistributedBatchSampler(
285 286 287 288 289
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
290 291 292 293 294

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def fit_with_tuple_input(self, dynamic, num_replicas=None, rank=None):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        paddle.seed(seed)
        paddle.framework.random._manual_program_seed(seed)

        net = LeNet()
        optim_new = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=tuple(self.inputs), labels=tuple(self.labels))
        model.prepare(
            optim_new,
            loss=CrossEntropyLoss(reduction="sum"),
            metrics=Accuracy())
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
        val_sampler = DistributedBatchSampler(
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
342 343 344 345 346 347 348 349 350 351 352 353 354
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
355 356
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
376 377
        model = Model(LeNet(), self.inputs)
        model.prepare()
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

399 400 401 402 403 404 405 406 407 408 409
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

410 411 412 413 414 415
    def test_summary_gpu(self):
        paddle.disable_static(self.device)
        rnn = paddle.nn.LSTM(16, 32, 2)
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])

416

417
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
418
    def __init__(self):
419
        super(MyModel, self).__init__()
420
        self._fc = Linear(20, 10)
421 422 423 424 425 426

    def forward(self, x):
        y = self._fc(x)
        return y


427 428 429 430 431 432 433 434 435
class MyDataset(Dataset):
    def __getitem__(self, idx):
        return np.random.random(size=(20,)).astype(np.float32), \
               np.random.randint(0, 10, size=(1,)).astype(np.int64)

    def __len__(self):
        return 40


436 437
class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
C
cnn 已提交
438
        paddle.seed(seed)
L
Leo Chen 已提交
439
        paddle.framework.random._manual_program_seed(seed)
440 441 442 443 444 445 446 447 448

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
449
            m = MyModel()
450 451 452
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
453 454
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
455 456 457 458 459 460 461 462 463
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
464
            device = paddle.set_device('cpu')
465 466 467
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
468
            net = MyModel()
469
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
470
                                         parameter_list=net.parameters())
471

472 473
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
474
            model = Model(net, inputs, labels)
475
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
476 477 478 479
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

480
    def test_test_batch(self):
481 482 483 484 485 486 487 488
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
489
            output = m(to_tensor(data))
490 491 492 493 494
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
495
            device = paddle.set_device('cpu')
496 497
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
498
            net = MyModel()
499
            inputs = [InputSpec([None, dim], 'float32', 'x')]
500 501
            model = Model(net, inputs)
            model.prepare()
502
            out, = model.predict_batch([data])
503

504
            np.testing.assert_allclose(out, ref, rtol=1e-6)
505 506 507 508 509
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
510
            device = paddle.set_device('cpu')
511
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
512
            net = MyModel()
513 514
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
515
            optim = fluid.optimizer.SGD(learning_rate=0.001,
516 517
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
518
            model.prepare(
519
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
520 521 522 523 524
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
        for new_optimizer in [True, False]:
            path = tempfile.mkdtemp()
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            paddle.enable_static()

548 549
    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
550
        # dynamic saving
551
        device = paddle.set_device('cpu')
552
        fluid.enable_dygraph(device)
553
        model = Model(MyModel())
554 555
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
556
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
557 558
        model.save(path + '/test')
        fluid.disable_dygraph()
559

560 561
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
562
        model = Model(MyModel(), inputs, labels)
563 564
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
565
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
566 567 568 569 570 571
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

L
LielinJiang 已提交
572
        net = MyModel()
573 574
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
575
        optim = fluid.optimizer.SGD(learning_rate=0.001,
576 577
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
578
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
579 580
        model.save(path + '/test')

581
        device = paddle.set_device('cpu')
582 583
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
584
        net = MyModel()
585 586
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
587
        optim = fluid.optimizer.SGD(learning_rate=0.001,
588 589
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
590
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
591 592 593 594 595 596
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
597
            device = paddle.set_device('cpu')
598
            fluid.enable_dygraph(device) if dynamic else None
599
            net = MyModel()
600
            inputs = [InputSpec([None, 20], 'float32', 'x')]
601 602
            model = Model(net, inputs)
            model.prepare()
603 604 605 606 607
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

628 629
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
630
            model.summary(input_size=(20), dtype='float32')
631

632 633 634
    def test_summary_non_tensor(self):
        paddle.summary(ModelOutter(), input_size=(-1, 3))

L
LielinJiang 已提交
635
    def test_summary_nlp(self):
636 637 638 639 640 641
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

L
LielinJiang 已提交
642 643 644 645 646
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
647

L
LielinJiang 已提交
648
        rnn = paddle.nn.LSTM(16, 32, 2)
649 650 651 652 653 654 655 656 657 658 659 660 661 662
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
L
LielinJiang 已提交
663

664
    def test_summary_input(self):
665 666 667 668 669 670
        paddle.enable_static()
        mymodel = MyModel()
        input_data = paddle.rand([1, 20])
        paddle.summary(mymodel, input=input_data)
        paddle.disable_static()

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        input_data = paddle.rand([4, 23, 16])
        paddle.summary(rnn, input=input_data)

        lenet_List_input = LeNetListInput()
        input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
        paddle.summary(lenet_List_input, input=input_data)

        lenet_dict_input = LeNetDictInput()
        input_data = {
            'x1': paddle.rand([1, 1, 28, 28]),
            'x2': paddle.rand([1, 400])
        }
        paddle.summary(lenet_dict_input, input=input_data)

L
LielinJiang 已提交
686 687 688 689 690
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
691 692 693
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
694
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
695 696 697 698 699 700 701

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
702
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
703

Y
yukavio 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    def test_static_flops(self):
        paddle.disable_static()
        net = models.__dict__['mobilenet_v2'](pretrained=False)
        inputs = paddle.randn([1, 3, 224, 224])
        static_program = jit._trace(net, inputs=[inputs])[1]
        paddle.flops(static_program, [1, 3, 224, 224], print_detail=True)

    def test_dynamic_flops(self):
        net = models.__dict__['mobilenet_v2'](pretrained=False)

        def customize_dropout(m, x, y):
            m.total_ops += 0

        paddle.flops(
            net, [1, 3, 224, 224],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True)

722
    def test_export_deploy_model(self):
723
        self.set_seed()
724
        np.random.seed(201)
725
        for dynamic in [True, False]:
726
            paddle.disable_static() if dynamic else None
727 728
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
729
            net = LeNet()
730
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
731 732 733 734 735 736 737
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
738

739
            model.save(save_dir, training=False)
740
            ori_results = model.predict_batch(tensor_img)
741
            fluid.disable_dygraph() if dynamic else None
742

743 744 745 746 747 748
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
749 750
                    paddle.static.io.load_inference_model(
                        path_prefix=save_dir, executor=exe))
751 752 753 754 755 756
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
757
            paddle.enable_static()
758

L
LiuChiachi 已提交
759
    def test_dygraph_export_deploy_model_about_inputs(self):
J
Jiaqi Liu 已提交
760 761
        self.set_seed()
        np.random.seed(201)
762 763
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
764
        # without inputs
765
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            net = LeNet()
            model = Model(net)
            optim = fluid.optimizer.Adam(
                learning_rate=0.001, parameter_list=model.parameters())
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
                img = np.array(
                    np.random.random((1, 1, 28, 28)), dtype=np.float32)
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
786
                    model.predict_batch([img])
787 788 789

            model.save(save_dir, training=False)
            shutil.rmtree(save_dir)
L
LiuChiachi 已提交
790 791 792 793 794 795 796 797 798 799 800 801
        # with inputs, and the type of inputs is InputSpec
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters())
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
802

L
lyuwenyu 已提交
803 804 805 806 807 808 809 810 811
    def test_accumulate(self, ):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
        net = MyModel()
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=net.parameters())
        inputs = [InputSpec([None, dim], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
lyuwenyu 已提交
812

L
lyuwenyu 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
        for amp_cfg in [None, 'O1']:
            model = Model(net, inputs, labels)
            model.prepare(
                optim,
                loss=CrossEntropyLoss(reduction="sum"),
                amp_configs=amp_cfg)
            losses, grads = [], []
            for stat in [False, False, True]:
                loss, = model.train_batch([data], [label], update=stat)
                losses.append(loss)
                grads.append([p.grad.numpy() for p in net.parameters()])

            for grad1, grad2, grad3 in zip(*grads):
                np.testing.assert_almost_equal(grad1 * 2, grad2, decimal=4)
                np.testing.assert_almost_equal(
                    grad3, np.zeros_like(grad3), decimal=4)

            np.testing.assert_almost_equal(losses[0], losses[1], decimal=4)
            np.testing.assert_almost_equal(losses[0], losses[2], decimal=4)
L
lyuwenyu 已提交
832

833

834
class TestModelWithLRScheduler(unittest.TestCase):
835 836 837 838
    def test_fit_by_step(self):
        base_lr = 1e-3
        boundaries = [5, 8]

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

858
        # dynamic test
859 860 861 862 863 864 865 866 867 868 869 870
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

871 872
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))
873
        # static test
874 875
        paddle.enable_static()

876 877 878 879 880 881 882 883 884 885
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))

    def test_fit_by_epoch(self):
        base_lr = 1e-3
        boundaries = [5, 8]
        epochs = 10
        wamup_epochs = 4

        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=wamup_epochs,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

        # dynamic test
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))
        # static test
        paddle.enable_static()

        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))

973

974 975
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
976
        net = MyModel()
977 978
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
979 980 981
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    def test_save_infer_model_without_file_prefix(self):
        paddle.enable_static()
        net = LeNet()
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        model = Model(net, inputs)
        model.prepare()
        path = ""
        tensor_img = np.array(
            np.random.random((1, 1, 28, 28)), dtype=np.float32)
        with self.assertRaises(ValueError):
            model.save(path, training=False)

1011

1012 1013
if __name__ == '__main__':
    unittest.main()