crop_tensor_kernel_impl.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/kernels/crop_tensor_kernel.h"

#include <utility>
#include <vector>

#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"

namespace phi {

static phi::DDim ValidateShape(const std::vector<int64_t>& shape,
                               const std::vector<int64_t>& offsets,
                               const phi::DDim& in_dims) {
  auto in_dim_size = in_dims.size();
  auto shape_size = shape.size();
  PADDLE_ENFORCE_EQ(
      in_dim_size,
      shape_size,
      errors::InvalidArgument(
          "The number of elements (%d) for shape of Op(crop_tensor) should be "
          "equal to the number of dimensions (%d) of the input tensor.",
          shape_size,
          in_dim_size));
  std::vector<int64_t> output_shape(shape.size(), 0);
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] <= 0 && in_dims[i] > 0) {
      PADDLE_ENFORCE_NE(shape[i],
                        0,
                        errors::InvalidArgument(
                            "The value (%d) of the %uth element for shape of "
                            "Op(crop_tensor) should not be zero.",
                            shape[i],
                            i));
      PADDLE_ENFORCE_EQ(
          shape[i],
          -1,
          errors::InvalidArgument("When the value (%d) of the %uth "
                                  "element for shape of Op(crop_tensor)"
                                  " is negative, only -1 is supported.",
                                  shape[i],
                                  i));
      output_shape[i] = in_dims[i] - offsets[i];
    } else {
      output_shape[i] = static_cast<int64_t>(shape[i]);
    }
  }

  return phi::make_ddim(output_shape);
}

template <typename Context, typename T, size_t D>
void CropTensorFunction(const Context& dev_ctx,
                        const DenseTensor& x,
                        const IntArray& shape,
                        const IntArray& offsets,
                        DenseTensor* out) {
  auto x_dims = x.dims();
  auto rank = x.dims().size();
  auto out_dims = out->dims();

  auto shape_vec = shape.GetData();

  if (shape_vec.size() == 0) {
    for (int i = 0; i < out_dims.size(); ++i) {
      shape_vec.push_back(out_dims[i]);
    }
  }

  auto offsets_vec = offsets.GetData();

  PADDLE_ENFORCE_EQ(
      rank,
      static_cast<int>(offsets_vec.size()),
      errors::InvalidArgument("The number of elements (%d) for "
                              "input 'Offsets' must be equal to "
                              "the number of dimensions (%d) "
                              "of the input tensor.",
                              static_cast<int>(offsets_vec.size()),
                              rank));

  out_dims = ValidateShape(shape_vec, offsets_vec, x.dims());
  out->Resize(out_dims);
  dev_ctx.template Alloc<T>(out);
  for (size_t i = 0; i < offsets_vec.size(); ++i) {
    PADDLE_ENFORCE_LE(offsets_vec[i] + shape_vec[i],
                      x_dims[i],
                      errors::InvalidArgument(
                          "The sum of the %uth elements of "
                          "offsets (%d) and shape (%d) of Op(crop_tensor) "
                          "should be less than or "
                          "equal to the size of %uth dimension of the input.",
                          i,
                          offsets_vec[i],
                          shape_vec[i],
                          i));
  }

  auto x_tensor = EigenTensor<T, D>::From(x);
  auto out_tensor = EigenTensor<T, D>::From(*out);
  Eigen::DSizes<Eigen::DenseIndex, D> e_offsets;
  Eigen::DSizes<Eigen::DenseIndex, D> e_shape;
  for (size_t i = 0; i < D; ++i) {
    e_offsets[i] = offsets_vec[i];
    e_shape[i] = out->dims()[i];
  }
  auto& place = *dev_ctx.eigen_device();
  phi::funcs::EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
      place, out_tensor, x_tensor, e_offsets, e_shape);
}

template <typename T, typename Context>
void CropTensorKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const IntArray& shape,
                      const IntArray& offsets,
                      DenseTensor* out) {
  int rank = x.dims().size();
  PADDLE_ENFORCE_GE(
      rank,
      1,
      errors::InvalidArgument(
          "The number of dimensions of the input 'x' for "
          "Op(crop_tensor) must be greater than or equal to 1, but the "
          "value received is %d.",
          rank));
  PADDLE_ENFORCE_LE(
      rank,
      6,
      errors::InvalidArgument(
          "The number of dimensions of the input 'x' for "
          "Op(crop_tensor) must be less than or equal to 6, but the "
          "value received is %d.",
          rank));
  switch (rank) {
    case 1:
      CropTensorFunction<Context, T, 1>(dev_ctx, x, shape, offsets, out);
      break;
    case 2:
      CropTensorFunction<Context, T, 2>(dev_ctx, x, shape, offsets, out);
      break;
    case 3:
      CropTensorFunction<Context, T, 3>(dev_ctx, x, shape, offsets, out);
      break;
    case 4:
      CropTensorFunction<Context, T, 4>(dev_ctx, x, shape, offsets, out);
      break;
    case 5:
      CropTensorFunction<Context, T, 5>(dev_ctx, x, shape, offsets, out);
      break;
    case 6:
      CropTensorFunction<Context, T, 6>(dev_ctx, x, shape, offsets, out);
      break;
  }
}

}  // namespace phi