pybind.cc 54.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
57
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
58
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
60

61
#include "paddle/fluid/string/to_string.h"
62

D
Dong Zhihong 已提交
63
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
64
#ifndef _WIN32
Y
Yi Wang 已提交
65
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
66
#endif
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
69 70
#endif

M
minqiyang 已提交
71 72
#include "pybind11/stl.h"

73 74 75 76
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
77 78 79
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

80
namespace paddle {
81
namespace pybind {
82
bool IsCompiledWithCUDA() {
83
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
84 85 86 87 88 89
  return false;
#else
  return true;
#endif
}

90
bool IsCompiledWithBrpc() {
91
#ifndef PADDLE_WITH_DISTRIBUTE
92 93
  return false;
#endif
94 95 96 97 98 99

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
100 101
}

Y
update  
Yancey1989 已提交
102
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
103
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
104 105 106 107 108 109
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
110 111 112 113 114 115 116 117 118 119
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

120
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
121 122 123
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
124
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
125
  m.doc() = "C++ core of PaddlePaddle";
126

127 128 129 130
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

131
  BindException(&m);
Y
Yu Yang 已提交
132

S
sneaxiy 已提交
133
  m.def(
S
sneaxiy 已提交
134
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
135 136 137 138
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
139 140 141
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

142 143 144 145 146 147 148
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
149
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
150 151
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
152
      .def("_run_backward",
X
Xin Pan 已提交
153
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
154
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
155
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
156
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
157
      .def("_grad_ivar",
M
minqiyang 已提交
158
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
159
           py::return_value_policy::reference)
M
minqiyang 已提交
160
      .def("_copy_to",
P
Paddle CI 已提交
161
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
162 163 164 165 166
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
167
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
168
      .def("_copy_to",
P
Paddle CI 已提交
169
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
170 171 172 173 174
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
175
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
176
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
177
           py::return_value_policy::reference)
178 179 180 181 182 183
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
184 185 186
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
187
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
188
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
189
            self.SetStopGradient(stop_gradient);
190
          });
191

192
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
193 194 195 196 197 198 199 200
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
201 202 203 204 205 206 207
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
208 209 210 211 212 213 214
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
215 216
          py::return_value_policy::reference);

X
Xin Pan 已提交
217
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
218
  layer.def(py::init<>())
X
Xin Pan 已提交
219 220 221
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
222
      });
X
Xin Pan 已提交
223

X
polish  
Xin Pan 已提交
224
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
225
      .def(py::init<>())
X
Xin Pan 已提交
226 227
      .def_static(
          "apply",
X
Xin Pan 已提交
228
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
229 230 231 232
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
233 234 235 236 237
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
238

239 240
  BindTracer(&m);

241 242 243
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
244
      .def("_get_dims",
245
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
246
      .def("_set_dims",
Q
qijun 已提交
247
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
248
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
249
           })
Y
yuyang18 已提交
250
      .def("_set_layout",
D
dzhwinter 已提交
251 252 253
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
254
      .def("_alloc_float",
D
dzhwinter 已提交
255
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
256
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
257
           })
Y
yuyang18 已提交
258
      .def("_alloc_float",
Y
Yu Yang 已提交
259
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
260
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
261
           })
Y
yuyang18 已提交
262
      .def("_alloc_int",
Y
Yu Yang 已提交
263
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
264
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
265
           })
Y
yuyang18 已提交
266
      .def("_alloc_int",
D
dzhwinter 已提交
267
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
268
             self.mutable_data<int>(place);
Q
qijun 已提交
269
           })
Y
yuyang18 已提交
270
      .def("_alloc_int",
C
chengduoZH 已提交
271 272 273
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
274
      .def("_alloc_float",
C
chengduoZH 已提交
275 276 277
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
278 279
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
280
      .def("set", PyCPUTensorSetFromArray<double>)
281
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
282
      .def("set", PyCPUTensorSetFromArray<bool>)
283
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
284
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
285
      .def("set", PyCPUTensorSetFromArray<int8_t>)
286
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
287 288
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
289
      .def("set", PyCUDATensorSetFromArray<double>)
290
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
291
      .def("set", PyCUDATensorSetFromArray<bool>)
292
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
293
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
294
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
295 296 297 298 299 300
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
301
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
302
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
303
#endif
304
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
305 306 307 308
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
309
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
310
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
311

X
Xin Pan 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
325
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
326
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
327
     columns, hence [5, 2].
X
Xin Pan 已提交
328 329 330

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
331 332
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
356 357
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
358 359 360 361 362 363 364 365 366 367 368 369 370 371
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
372
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
373 374 375 376 377
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
378
      .def("set_lod",
379
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
380
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
381
             LoD new_lod;
382 383
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
384 385
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
386
             self.set_lod(new_lod);
S
sneaxiy 已提交
387 388 389 390 391 392 393
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
409 410 411 412
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
413
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
S
sneaxiy 已提交
414
           there are two sequences with length 2 and 3 respectively, the 
S
sneaxiy 已提交
415
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].  
S
sneaxiy 已提交
416 417 418 419

           Args:
                recursive_sequence_lengths (List[List[int]]): sequence lengths. 
           )DOC")
420 421 422 423 424 425 426 427
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
428 429 430 431 432 433 434
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
435
      // Set above comments of set_lod.
436 437 438 439 440 441 442 443
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
               out (List[List[int]): the sequence lengths. 
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
463

Q
qijun 已提交
464 465 466 467 468 469 470 471 472 473 474
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
475 476
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
477 478
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
479 480 481 482 483 484 485 486 487
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
488
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
489
      .def("rows", [](SelectedRows &self) {
490 491 492 493 494
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
495
      });
Q
qijun 已提交
496

497
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
498 499 500

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
501
      .def(py::init<>())
502
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
503
      .def("set_int",
504 505
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
506 507 508 509 510 511 512
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
513
      .def("get_tensor",
514 515
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
516 517
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
518 519 520
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
521 522 523 524 525
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
526 527 528
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
529
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
530 531 532 533 534
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
535
#endif
Y
Refine  
Yu Yang 已提交
536 537 538 539 540
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
541
           py::return_value_policy::reference);
542

S
sneaxiy 已提交
543
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
544

S
sneaxiy 已提交
545 546 547 548
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
549 550 551 552 553 554

  using LockFreeLoDTensorBlockingQueue =
      ::paddle::operators::reader::LockFreeLoDTensorBlockingQueue;
  using LockFreeLoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LockFreeLoDTensorBlockingQueueHolder;

S
sneaxiy 已提交
555 556
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
557
      .def("push",
S
sneaxiy 已提交
558
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
559
              std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
560
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
561
             return self.Push(std::move(lod_tensor_vec));
S
sneaxiy 已提交
562
           })
S
sneaxiy 已提交
563 564 565 566
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
567

S
sneaxiy 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581
  py::class_<LockFreeLoDTensorBlockingQueue,
             std::shared_ptr<LockFreeLoDTensorBlockingQueue>>(
      m, "LockFreeLoDTensorBlockingQueue", "")
      .def("push",
           [](LockFreeLoDTensorBlockingQueue &self,
              std::vector<framework::LoDTensor> &lod_tensor_vec) {
             pybind11::gil_scoped_release release;
             return self.Push(std::move(lod_tensor_vec));
           })
      .def("size", &LockFreeLoDTensorBlockingQueue::Size)
      .def("capacity", &LockFreeLoDTensorBlockingQueue::Cap)
      .def("close", &LockFreeLoDTensorBlockingQueue::Close)
      .def("is_closed", &LockFreeLoDTensorBlockingQueue::IsClosed);

S
sneaxiy 已提交
582
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
583 584 585 586 587 588
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
589
        py::return_value_policy::copy);
S
sneaxiy 已提交
590

S
sneaxiy 已提交
591 592 593 594 595 596 597 598 599
  m.def("init_lock_free_lod_tensor_blocking_queue",
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LockFreeLoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LockFreeLoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity);
          return holder->GetQueue();
        },
        py::return_value_policy::copy);

S
sneaxiy 已提交
600
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
620 621
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
622
      .def("var",
623
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
624
             return self.Var(name);
Y
Yu Yang 已提交
625
           },
S
sneaxiy 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
           py::arg("name"),
           R"DOC(
           Find or create variable named :code:`name` in the current scope. 

           If the variable named :code:`name` does not exist in the 
           current scope, the variable would be created. Otherwise,
           return the existing variable. 

           Args:
               name (str): the variable name.  
          
           Returns:
               out (core.Variable): the found or created variable. 
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
           Find variable named :code:`name` in the current scope or 
           its parent scope. Return None if not found.
        
           Args:
               name (str): the variable name.
            
           Returns:
               out (core.Variable|None): the found variable or None.   
           )DOC",
652
           py::return_value_policy::reference)
653
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
654 655 656 657 658 659
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
660
           py::return_value_policy::reference)
S
sneaxiy 已提交
661 662 663 664
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
665

S
sneaxiy 已提交
666 667 668 669 670 671
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
672 673 674 675 676 677
        R"DOC(
        Create a new scope.
        
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
678 679
        py::return_value_policy::reference);

Y
Yu Yang 已提交
680 681
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
682 683
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
684 685 686 687 688 689 690 691 692 693
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
694 695
    return ret_values;
  });
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
712
  m.def("prune", [](const ProgramDesc &origin,
713
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
714
    ProgramDesc prog_with_targets(origin);
715
    for (const auto &t : targets) {
716
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
717
    }
718
    proto::ProgramDesc pruned_desc;
719
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
720
    return new ProgramDesc(pruned_desc);
721
  });
722 723 724 725
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
726 727 728
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
729 730
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
731
  // clang-format off
Y
Yu Yang 已提交
732
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
733 734
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
735
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
736 737 738
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
739
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
740
                      -> paddle::platform::DeviceContext* {
741
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
742
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
743
#else
Q
qijun 已提交
744
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
745
#endif
C
chengduoZH 已提交
746 747 748 749 750 751 752 753 754 755 756
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
757
// clang-format on
P
peizhilin 已提交
758
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
759 760
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
761
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
762 763 764 765 766 767 768 769 770 771 772 773
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
774 775 776 777 778 779 780 781
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
      .def("gpu_device_id",
           [](platform::CUDAPlace &self) { return self.device; })
D
dzhwinter 已提交
782
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
783

784 785
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
786 787 788 789 790 791
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
792
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
793

C
chengduoZH 已提交
794
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
795
      .def("__init__",
S
sneaxiy 已提交
796
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
797 798 799
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
800
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
801
           })
S
sneaxiy 已提交
802 803 804 805 806 807 808 809
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
810 811
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
812 813
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
814 815 816 817 818
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
819 820
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
821 822 823 824 825 826
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
827 828 829 830
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
831 832
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
833 834 835 836 837
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
838
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
839
             self = gpu_place;
C
chengduoZH 已提交
840 841
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
842 843
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
844
      });
Y
Yu Yang 已提交
845

Y
Yu Yang 已提交
846 847 848
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
849
                    proto::OpDesc desc;
Y
Yu Yang 已提交
850 851 852 853 854
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
855
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
856
                  })
857
      .def("run",
858
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
859 860 861
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
862
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
863 864 865 866 867
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
868 869 870 871 872 873 874
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
875 876
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
877
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
878
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
879 880 881 882
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
883

F
fengjiayi 已提交
884
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
885
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
886
      .def("close", &Executor::Close)
S
sneaxiy 已提交
887 888 889 890 891
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
892

D
dzhwinter 已提交
893
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
894
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
895 896
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
897

898
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
899
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
900
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
901 902 903 904 905 906
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
907

908
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
909
  m.def("get_fetch_variable", framework::GetFetchVariable);
910
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
911

X
Xin Pan 已提交
912 913
  m.def("_is_program_version_supported", IsProgramVersionSupported);

914 915 916 917 918
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
919

Y
Yu Yang 已提交
920 921 922 923 924 925 926 927 928
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
929
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
930 931
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
932 933 934 935 936 937 938 939 940 941
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
942 943 944 945 946 947 948
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
949

D
dzhwinter 已提交
950 951 952
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
953
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
954
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
955
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
956

P
peizhilin 已提交
957
#ifndef _WIN32
D
dangqingqing 已提交
958 959 960
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
961
#endif
P
peizhilin 已提交
962
#endif
Y
Yu Yang 已提交
963

964 965 966 967
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
968
      .value("kAll", platform::ProfilerState::kAll)
969 970 971 972 973 974 975 976 977 978 979 980 981
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
982
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
983
  m.def("reset_profiler", platform::ResetProfiler);
984
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
985 986 987
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
988

989 990
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
991
      .def("has", &ir::Pass::Has)
992 993 994
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
995
           })
996
      .def(
997
          "set",
998 999 1000
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1001 1002
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1003 1004 1005 1006
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1007
        optim_graph.release();
F
flame 已提交
1008
      });
1009

X
fix  
Xin Pan 已提交
1010 1011
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1026
  // -- python binds for parallel executor.
Y
yuyang18 已提交
1027
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1028 1029 1030 1031
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1043 1044 1045

        )DOC");

Y
yuyang18 已提交
1046
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1047 1048 1049 1050 1051
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1062
      .def_property(
1063 1064 1065 1066
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1067 1068 1069 1070
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1071 1072 1073 1074 1075
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1076 1077 1078 1079
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1080 1081 1082 1083 1084 1085 1086
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1098 1099 1100 1101 1102 1103
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1104

Y
yuyang18 已提交
1105
  exec_strategy.def_property(
Y
yuyang18 已提交
1106 1107 1108 1109 1110 1111 1112
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1113 1114
      });

C
chengduo 已提交
1115 1116 1117 1118
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1130
)DOC");
Y
yuyang18 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1147
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1148
            self.reduce_ = strategy;
C
chengduo 已提交
1149 1150 1151 1152 1153 1154 1155
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1156 1157 1158 1159 1160
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1161
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1162
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1163 1164 1165 1166 1167 1168
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1169 1170 1171 1172
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1173
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1174
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1175 1176 1177 1178
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1179 1180 1181 1182 1183 1184
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1185
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1195
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1196 1197
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1198
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1199 1200 1201 1202 1203 1204
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1217 1218 1219 1220 1221 1222
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1223
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1224 1225 1226 1227 1228
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1243 1244 1245 1246
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1247 1248 1249 1250
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1251
      .def_property(
D
dzhwinter 已提交
1252 1253 1254
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1255
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1256
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1257 1258 1259 1260 1261
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1262 1263 1264

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1265
                  const std::string &, Scope *, std::vector<Scope *> &,
1266
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1267 1268 1269 1270
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1271 1272 1273 1274 1275
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1276 1277 1278 1279
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1280 1281 1282 1283 1284 1285
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1286

1287
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1288
  BindAsyncExecutor(&m);
F
flame 已提交
1289 1290
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1291
  BindInferenceApi(&m);
L
Luo Tao 已提交
1292
}
1293
}  // namespace pybind
1294
}  // namespace paddle