api.yaml 11.1 KB
Newer Older
1
- api : add
Z
zyfncg 已提交
2
  args : (Tensor x, Tensor y)
3
  output : Tensor
4
  infer_meta :
5 6
    func : ElementwiseInferMeta
  kernel :
Y
YuanRisheng 已提交
7
    func : add
H
hong 已提交
8
  # backward : add_grad
9 10

- api : cast
Z
zyfncg 已提交
11
  args : (Tensor x, DataType out_dtype)
12
  output : Tensor
13
  infer_meta :
14 15 16
    func : CastInferMeta
  kernel :
    func : cast
17
    param : [x, out_dtype]
18 19
    data_type : x

20 21

- api : concat
Z
zyfncg 已提交
22
  args : (Tensor[] x, Scalar axis)
23 24 25
  output : Tensor
  infer_meta :
    func : ConcatInferMeta
26
    param : [x, axis]
27 28 29
  kernel :
    func : concat

30
- api : conj
Z
zyfncg 已提交
31
  args : (Tensor x)
32 33 34 35 36 37
  output : Tensor
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : conj

38
- api : copy_to
39
  args : (Tensor x, Place place, bool blocking)
40
  output : Tensor
41
  invoke : copy_to_impl(x, place, blocking)
42

43
- api : divide
Z
zyfncg 已提交
44
  args : (Tensor x, Tensor y)
45
  output : Tensor
46
  infer_meta :
47 48
    func : ElementwiseInferMeta
  kernel :
Y
YuanRisheng 已提交
49
    func : divide
50 51

- api : dot
Z
zyfncg 已提交
52
  args : (Tensor x, Tensor y)
53
  output : Tensor
54
  infer_meta :
55
    func : DotInferMeta
56
  kernel :
57 58
    func : dot

59
- api : empty
60
  args : (ScalarArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace())
61
  output: Tensor
62
  infer_meta :
63
    func : CreateInferMeta
64
    param : [shape, dtype]
65
  kernel :
66
    func : empty
67
    param : [shape, dtype]
68 69
    data_type : dtype
    backend : place
70

71
- api : empty_like
72
  args : (Tensor x, DataType dtype = DataType::UNDEFINED, Place place = {})
73
  output: Tensor
74
  infer_meta :
75
    func : CreateLikeInferMeta
76
    param : [x, dtype]
77
  kernel :
78
    func : empty_like
79
    param : [x, dtype]
80 81 82
    data_type : dtype > x
    backend : place > x

83
- api : flatten
Z
zyfncg 已提交
84
  args : (Tensor x, int start_axis, int stop_axis)
85
  output : Tensor
86
  infer_meta :
87
    func : FlattenInferMeta
88
  kernel :
Y
YuanRisheng 已提交
89
    func : flatten
90 91

- api : full
92
  args : (ScalarArray shape, Scalar value, DataType dtype=DataType::FLOAT32, Place place=CPUPlace())
93
  output: Tensor
94
  infer_meta :
Z
zyfncg 已提交
95
    func : CreateInferMeta
96
    param : [shape, dtype]
97
  kernel :
Y
YuanRisheng 已提交
98
    func : full
99
    param : [shape, value, dtype]
100 101
    data_type : dtype
    backend : place
102

103
- api : full_like
104
  args : (Tensor x, Scalar value, DataType dtype = DataType::UNDEFINED, Place place = {})
105
  output: Tensor
106
  infer_meta :
Z
zyfncg 已提交
107
    func : CreateLikeInferMeta
108
    param : [x, dtype]
109
  kernel :
Y
YuanRisheng 已提交
110
    func : full_like
111
    param : [x, value, dtype]
112 113 114 115
    data_type : dtype > x
    backend : place > x

- api : matmul
Z
zyfncg 已提交
116
  args : (Tensor x, Tensor y, bool transpose_x = false, bool transpose_y = false)
117
  output : Tensor
118
  infer_meta :
119
    func : MatmulInferMeta
120
  kernel :
121
    func : matmul
122
  backward : matmul_grad
123 124

- api : mean
125
  args : (Tensor x, int64[] axis={}, bool keep_dim=false)
126
  output : Tensor
127
  infer_meta :
128
    func : ReduceInferMeta
129
  kernel :
Y
YuanRisheng 已提交
130
    func : mean
131 132

- api : multiply
Z
zyfncg 已提交
133
  args : (Tensor x, Tensor y)
134
  output : Tensor
135
  infer_meta :
136 137
    func : ElementwiseInferMeta
  kernel :
Y
YuanRisheng 已提交
138
    func : multiply
139 140

- api : ones_like
141
  args : (Tensor x, DataType dtype=DataType::UNDEFINED, Place place={})
142
  output : Tensor
143
  invoke : full_like(x, 1, dtype, place)
144

F
From00 已提交
145 146 147 148 149 150 151 152
- api : pool2d
  args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(out)
  infer_meta :
    func : PoolInferMeta
  kernel:
    func : pool2d

153
- api : reshape
Z
zyfncg 已提交
154
  args : (Tensor x, ScalarArray shape)
155
  output : Tensor(out)
156
  infer_meta :
157
    func : ReshapeInferMeta
158
  kernel :
Y
YuanRisheng 已提交
159
    func : reshape
160
  inplace : (x -> out)
161

Y
YuanRisheng 已提交
162 163 164 165 166 167 168 169
- api : relu
  args : (Tensor x)
  output : Tensor
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : relu
  inplace : (x -> out)
170
  backward: relu_grad
Y
YuanRisheng 已提交
171

172
- api : scale
Z
zyfncg 已提交
173
  args : (Tensor x, Scalar scale, float bias, bool bias_after_scale)
174
  output : Tensor
175
  infer_meta :
176 177 178
    func : UnchangedInferMeta
    param : [x]
  kernel :
179
    func : scale, scale_sr
180
  inplace : (x -> out)
181

182
- api : sign
Z
zyfncg 已提交
183
  args : (Tensor x)
184 185 186 187 188 189
  output : Tensor
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : sign

190 191 192 193 194 195 196 197
- api : softmax
  args : (Tensor x, int axis)
  output : Tensor
  infer_meta :
    func : SoftmaxInferMeta
  kernel :
    func : sotfmax

198 199 200 201 202
- api : split
  args : (Tensor x, ScalarArray num_or_sections, Scalar axis)
  output : Tensor[]
  invoke : split_impl(x, num_or_sections, axis)

203
- api : subtract
Z
zyfncg 已提交
204
  args : (Tensor x, Tensor y)
205
  output : Tensor
206
  infer_meta :
207 208
    func : ElementwiseInferMeta
  kernel :
Y
YuanRisheng 已提交
209
    func : subtract
210 211

- api : sum
212
  args : (Tensor x, int64[] axis={}, DataType dtype=DataType::UNDEFINED, bool keep_dim=false)
213
  output : Tensor
214
  infer_meta :
215
    func : SumInferMeta
216
  kernel :
Y
YuanRisheng 已提交
217
    func : sum
218
    data_type : x
219 220

- api : zeros_like
221
  args : (Tensor x, DataType dtype=DataType::UNDEFINED, Place place = {})
222
  output : Tensor
223
  invoke : full_like(x, 0, dtype, place)
H
hong 已提交
224

H
hong 已提交
225 226 227 228 229 230 231 232

- api : one_hot
  args : (Tensor x, Scalar num_classes)
  output : Tensor
  infer_meta :
    func : OneHotInferMeta
  kernel :
    func : one_hot
233

H
hong 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
- api : digamma
  args : (Tensor x)
  output : Tensor
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : digamma
  backward : digamma_grad

- api : abs
  args : (Tensor x)
  output : Tensor
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : abs
  backward : abs_grad

- api : trunc
  args : (Tensor x)
  output : Tensor
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : trunc
  backward : trunc_grad

# - api : norm
#   args : (Tensor x, int axis, float epsilon, bool is_test)
#   output : Tensor(out), Tensor(norm)
#   infer_meta :
#     func : NormInferMeta
#   kernel :
#     func : norm
#   intermediate : norm
#   backward : norm_grad

- api : diagonal
  args : (Tensor x, int offset, int axis1, int axis2)
  output : Tensor
  infer_meta :
    func : DiagonalInferMeta
  kernel :
    func : diagonal
  backward : diagonal_grad
H
hong 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540


- api : gumbel_softmax
  args : (Tensor x, float temperature, bool hard, int axis)
  output : Tensor
  infer_meta :
    func : GumbelSoftmaxInferMeta
  kernel :
    func : gumbel_softmax
  # backward : gumbel_softmax_grad

- api : diag
  args : (Tensor x, int offset, float padding_value)
  output : Tensor
  infer_meta :
    func : DiagInferMeta
  kernel :
    func : diag

# - api : pixel_shuffle
#   args : (Tensor x, int upscale_factor, const std::string& data_format)
#   output : Tensor
#   infer_meta :
#     func : PixelShuffleInferMeta
#   kernel :
#     func : pixel_shuffle

- api : transpose
  args : (Tensor x, int[] axis)
  output : Tensor
  infer_meta :
    func : TransposeInferMeta
  kernel :
    func : transpose
  backward : transpose_grad

- api : lerp
  args : (Tensor x, Tensor y, Tensor weight)
  output : Tensor
  infer_meta :
    func : LerpInferMeta
  kernel :
    func : lerp
  # backward : lerp_grad

- api : scatter
  args : (Tensor x, Tensor index, Tensor updates, bool overwrite)
  output : Tensor
  infer_meta :
    func : ScatterInferMeta
    dtype : x
  kernel :
    func : scatter
  backward : scatter_grad


- api : scatter_nd_add
  args : (Tensor x, Tensor index, Tensor updates)
  output : Tensor
  infer_meta :
    func : ScatterNdAddInferMeta
    dtype : x
  kernel :
    func : scatter_nd_add
  backward : scatter_nd_add_grad


- api : addmm
  args : (Tensor input, Tensor x, Tensor y, float alpha, float beta)
  output : Tensor
  infer_meta :
    func : AddmmInferMeta
  kernel :
    func : addmm
  backward : addmm_grad


- api : adadelta
  args : (Tensor param, Tensor grad, Tensor avg_squared_grad, Tensor avg_squared_update, float rho, float epsilon)
  output : Tensor(param_out), Tensor(moment_out), Tensor(inf_norm_out)
  infer_meta :
    func : AdadeltaInferMeta
  kernel :
    func : adadelta

- api : adamax
  args : (Tensor param, Tensor grad, Tensor learning_rate, Tensor moment, Tensor inf_norm, Tensor beta1_pow, float beta1, float beta2, float epsilon)
  output : Tensor(param_out), Tensor(avg_squared_grad_out), Tensor(avg_squared_update_out)
  infer_meta :
    func : AdamaxInferMeta
  kernel :
    func : adamax
  


- api : where
  args : (Tensor condition, Tensor x, Tensor y)
  output : Tensor
  infer_meta :
    func : WhereInferMeta
  kernel :
    func : where
  backward : where_grad


# BilinearTensorProductInferMeta

# BroadcastTensorsInferMeta

- api : less_than
  args : (Tensor x, Tensor y, int axis = -1)
  output : Tensor
  infer_meta :
    func : CompareInferMeta
  kernel :
    func : less_than  

- api : less_equal
  args : (Tensor x, Tensor y, int axis = -1)
  output : Tensor
  infer_meta :
    func : CompareInferMeta
  kernel :
    func : less_equal

- api : greater
  args : (Tensor x, Tensor y, int axis = -1)
  output : Tensor
  infer_meta :
    func : CompareInferMeta
  kernel :
    func : greater

- api : greater_equal
  args : (Tensor x, Tensor y, int axis = -1)
  output : Tensor
  infer_meta :
    func : CompareInferMeta
  kernel :
    func : greater_equal

- api : equal
  args : (Tensor x, Tensor y, int axis = -1)
  output : Tensor
  infer_meta :
    func : CompareInferMeta
  kernel :
    func : equal
  
- api : not_equal
  args : (Tensor x, Tensor y, int axis = -1)
  output : Tensor
  infer_meta :
    func : CompareInferMeta
  kernel :
    func : not_equal

# - api : equal_all
#   args : (Tensor x, Tensor y)
#   output : Tensor
#   infer_meta :
#     func : CompareAllInferMeta
#   kernel :
#     func : equal_all


- api : huber_loss
  args : (Tensor input, Tensor label, float delta)
  output : Tensor(out), Tensor(residual)
  infer_meta :
    func : HuberLossInferMeta
  kernel :
    func : huber_loss
  # backward : huber_loss_grad

- api : triangular_solve
  args : (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular)
  output : Tensor
  infer_meta :
    func : TriangularSolveInferMeta
  kernel :
    func : triangular_solve
  # backward : triangular_solve_grad


- api : index_sample
  args : (Tensor x, Tensor index)
  output : Tensor
  infer_meta :
    func : IndexSampleInferMeta
  kernel :
    func : index_sample
    data_type : x
  backward : index_sample_grad


- api : cross
  args : (Tensor x, Tensor y, int axis = 9)
  output : Tensor
  infer_meta :
    func : CrossInferMeta
  kernel :
    func : cross
  backward : cross_grad


- api : atan2
  args : (Tensor x, Tensor y)
  output : Tensor
  infer_meta :
    func : Atan2InferMeta
  kernel :
    func : atan2
  backward : atan2_grad


- api : bce_loss
  args : (Tensor input, Tensor label)
  output : Tensor
  infer_meta :
    func : BCELossInferMeta
  kernel :
    func : bce_loss
  backward : bce_loss_grad


- api : dist
  args : (Tensor x, Tensor y, float p)
  output : Tensor
  infer_meta :
    func : DistInferMeta
  kernel :
    func : dist
  # backward : dist_grad


- api : gather_nd
  args : (Tensor x, Tensor index)
  output : Tensor
  infer_meta :
    func : GatherNdInferMeta
  kernel :
    func : gather_nd
    data_type : x
  backward : gather_nd_grad

- api : gather_tree
  args : (Tensor ids, Tensor parents)
  output : Tensor
  infer_meta :
    func : GatherTreeMeta
  kernel :
    func : gather_tree

- api : mv
  args : (Tensor x, Tensor vec)
  output : Tensor
  infer_meta :
    func : MvInferMeta
  kernel :
    func : mv
  backward : mv_grad
H
hong 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553



#  =================================== sep0


#  =================================== sep1


#  =================================== sep2


#  =================================== sep3