test_elementwise_div_op.py 12.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
G
gongweibao 已提交
22 23 24 25 26


class ElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
27
        self.dtype = np.float64
W
Wu Yi 已提交
28
        self.init_dtype()
G
gongweibao 已提交
29 30 31 32 33 34
        """ Warning
        CPU gradient check error!
        'X': np.random.random((32,84)).astype("float32"),
        'Y': np.random.random((32,84)).astype("float32")
        """
        self.inputs = {
W
Wu Yi 已提交
35 36
            'X': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
G
gongweibao 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))

W
Wu Yi 已提交
54 55 56
    def init_dtype(self):
        pass

G
gongweibao 已提交
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
@unittest.skipIf(
    not core.is_compiled_with_cuda() or core.cudnn_version() < 8100,
    "core is not compiled with CUDA and cudnn version need larger than 8.1.0")
class TestElementwiseDivOpBF16(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.dtype = np.uint16

        x = np.random.uniform(0.1, 1, [12, 13]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [12, 13]).astype(np.float32)

        out = np.divide(x, y)

        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', no_grad_set=set('Y'))


94 95
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
96 97 98 99
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
100
            'X': np.random.uniform(0.1, 1, [20, 3, 4]).astype(np.float64),
101
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
102 103 104 105
        }
        self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}


G
gongweibao 已提交
106 107 108 109
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
110 111
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
112 113 114 115 116 117 118 119
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
120 121
            'X': np.random.uniform(0.1, 1, [100, 3, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
122 123 124 125 126
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
127
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
G
gongweibao 已提交
128 129 130 131 132 133 134
        }


class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
135 136
            'X': np.random.uniform(0.1, 1, [2, 100, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
137 138 139 140 141
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
142
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
G
gongweibao 已提交
143 144 145 146 147 148 149
        }


class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
150 151
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
152 153 154 155
        }

        self.outputs = {
            'Out':
156
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
G
gongweibao 已提交
157 158 159 160 161 162 163
        }


class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
164 165
            'X': np.random.uniform(0.1, 1, [2, 10, 12, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [10, 12]).astype("float64")
G
gongweibao 已提交
166 167 168 169 170
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
171
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 10, 12, 1))
G
gongweibao 已提交
172 173 174
        }


175 176 177 178
class TestElementwiseDivOp_broadcast_4(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
179 180
            'X': np.random.uniform(0.1, 1, [2, 3, 50]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 1, 50]).astype("float64")
181 182 183 184 185 186 187 188
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_5(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
189 190
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 20]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 1, 20]).astype("float64")
191 192 193 194
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


195 196 197 198
class TestElementwiseDivOp_commonuse_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
199 200
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [1, 1, 100]).astype("float64"),
201 202 203 204 205 206 207 208
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_commonuse_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
209 210
            'X': np.random.uniform(0.1, 1, [30, 3, 1, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [30, 1, 4, 1]).astype("float64"),
211 212 213 214 215 216 217 218
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_xsize_lessthan_ysize(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
219 220
            'X': np.random.uniform(0.1, 1, [10, 12]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 10, 12]).astype("float64"),
221 222 223 224 225 226 227
        }

        self.attrs = {'axis': 2}

        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


228 229 230 231 232 233 234
class TestElementwiseDivOp_INT(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.dtype = np.int32
        self.init_dtype()
        self.inputs = {
            'X': np.random.randint(
235
                1, 5, size=[13, 17]).astype(self.dtype),
236
            'Y': np.random.randint(
237
                1, 5, size=[13, 17]).astype(self.dtype)
238 239 240 241 242 243 244 245 246 247
        }
        self.outputs = {'Out': self.inputs['X'] // self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def init_dtype(self):
        pass


248 249
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
class TestElementwiseDivOpFp16(ElementwiseDivOp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=1, no_grad_set=set('Y'))


266 267 268 269 270 271 272 273 274 275 276 277 278
class TestElementwiseDivBroadcast(unittest.TestCase):
    def test_shape_with_batch_sizes(self):
        with fluid.program_guard(fluid.Program()):
            x_var = fluid.data(
                name='x', dtype='float32', shape=[None, 3, None, None])
            one = 2.
            out = one / x_var
            exe = fluid.Executor(fluid.CPUPlace())
            x = np.random.uniform(0.1, 0.6, (1, 3, 32, 32)).astype("float32")
            out_result, = exe.run(feed={'x': x}, fetch_list=[out])
            self.assertEqual((out_result == (2 / x)).all(), True)


S
ShenLiang 已提交
279 280 281 282 283
class TestDivideOp(unittest.TestCase):
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')
284

S
ShenLiang 已提交
285 286
            y_1 = paddle.divide(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)
287 288

    def test_dygraph(self):
S
ShenLiang 已提交
289 290 291 292 293 294 295 296 297
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            np_z = z.numpy()
            z_expected = np.array([2., 0.6, 2.])
            self.assertEqual((np_z == z_expected).all(), True)
298 299


300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
class TestComplexElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x / self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = self.grad_out / np.conj(self.y)
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


C
chentianyu03 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
class TestRealComplexElementwiseDivOp(TestComplexElementwiseDivOp):
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x / self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = np.real(self.grad_out / np.conj(self.y))
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)


G
gongweibao 已提交
374
if __name__ == '__main__':
375
    paddle.enable_static()
G
gongweibao 已提交
376
    unittest.main()