test_pool2d_api.py 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
Double_V 已提交
15
from test_pool2d_op import adaptive_start_index, adaptive_end_index, pool2D_forward_naive, avg_pool2D_forward_naive, max_pool2D_forward_naive
16 17 18 19
import unittest
from op_test import OpTest
import numpy as np
import paddle.fluid.core as core
X
xiaoting 已提交
20
from paddle.nn.functional import avg_pool2d, max_pool2d
21 22 23 24
import paddle.fluid as fluid
import paddle


C
cnn 已提交
25
class TestPool2D_API(unittest.TestCase):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32], dtype="float32")
            result = avg_pool2d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(input, kernel_size=2, stride=2, padding=0)

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
66
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
67 68 69 70
                kernel_size=2, stride=2, padding=0)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(
                input, kernel_size=2, stride=2, padding=1, ceil_mode=False)

            result_np = avg_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[1, 1],
                ceil_mode=False,
                exclusive=False)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
87
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
D
Double_V 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                kernel_size=2, stride=2, padding=1, ceil_mode=False)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = avg_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                ceil_mode=True)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
107
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
D
Double_V 已提交
108 109 110 111
                kernel_size=2, stride=2, padding=0, ceil_mode=True)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32], dtype="float32")
            result = max_pool2d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool2d(
                input, kernel_size=2, stride=2, padding=0, return_indices=False)

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
147
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
148 149 150 151
                kernel_size=2, stride=2, padding=0)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    def check_max_dygraph_nhwc_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(
                np.transpose(input_np, [0, 2, 3, 1]))
            result = max_pool2d(
                input,
                kernel_size=2,
                stride=2,
                padding=0,
                return_indices=False,
                data_format="NHWC")

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')
            self.assertTrue(
                np.allclose(
                    np.transpose(result.numpy(), [0, 3, 1, 2]), result_np))

    def check_max_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool2d(
                input, kernel_size=2, stride=2, padding=1, ceil_mode=False)

            result_np = max_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[1, 1],
                ceil_mode=False,
                exclusive=False)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
191
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
D
Double_V 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                kernel_size=2, stride=2, padding=1, ceil_mode=False)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool2d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = max_pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                ceil_mode=True)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
211
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
D
Double_V 已提交
212 213 214 215
                kernel_size=2, stride=2, padding=0, ceil_mode=True)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    def check_max_dygraph_stride_is_none(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result, indices = max_pool2d(
                input,
                kernel_size=2,
                stride=None,
                padding="SAME",
                return_indices=True)

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max',
                padding_algorithm="SAME")
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
236
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
                kernel_size=2, stride=2, padding=0)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_dygraph_stride_is_none(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool2d(
                input, kernel_size=2, stride=None, padding="SAME")

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg',
                padding_algorithm="SAME")
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
257
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
                kernel_size=2, stride=2, padding=0)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_padding(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = [[0, 0], [0, 0], [0, 0], [0, 0]]
            result = max_pool2d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                return_indices=False)

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='max')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
282
            max_pool2d_dg = paddle.nn.layer.MaxPool2D(
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
                kernel_size=2, stride=2, padding=0)
            result = max_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_divisor(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = [[0, 0], [0, 0], [0, 0], [0, 0]]
            result = avg_pool2d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=4)

            result_np = pool2D_forward_naive(
                input_np,
                ksize=[2, 2],
                strides=[2, 2],
                paddings=[0, 0],
                pool_type='avg')
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
307
            avg_pool2d_dg = paddle.nn.layer.AvgPool2D(
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
                kernel_size=2, stride=2, padding=0)
            result = avg_pool2d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def test_pool2d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_stride_is_none(place)
            self.check_avg_dygraph_stride_is_none(place)
            self.check_max_dygraph_padding(place)
            self.check_avg_divisor(place)
D
Double_V 已提交
323 324 325
            self.check_max_dygraph_padding_results(place)
            self.check_max_dygraph_ceilmode_results(place)
            self.check_max_dygraph_nhwc_results(place)
326 327


C
cnn 已提交
328
class TestPool2DError_API(unittest.TestCase):
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    def test_error_api(self):
        def run1():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0]]
                res_pd = max_pool2d(
                    input_pd, kernel_size=2, stride=2, padding=padding)

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0]]
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run3)

        def run3_avg():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run3_avg)

        def run4():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                    data_format='NHWC')

        self.assertRaises(ValueError, run4)

        def run4_avg():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                    data_format='NHWC')

        self.assertRaises(ValueError, run4_avg)

        def run5():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NHWC')

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                    data_format='NHWC')

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = avg_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=False,
                    data_format='NNNN')

        self.assertRaises(ValueError, run7)

        def run8():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=False,
                    data_format='NNNN')

        self.assertRaises(ValueError, run8)

D
Double_V 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        def run9():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool2d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    ceil_mode=False,
                    data_format='NHWC',
                    return_indices=True)

        self.assertRaises(ValueError, run9)

497 498 499

if __name__ == '__main__':
    unittest.main()