dist_context.py 30.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
from paddle.fluid import framework
18
from paddle.fluid.framework import get_flags, set_flags
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from paddle.fluid import core
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


43 44 45 46
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


47 48 49 50 51 52
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

53 54 55 56 57
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
                 dist_main_progs=None,
                 dist_startup_progs=None):
58
        # Program related data members
59
        self._serial_program = serial_main_prog
60 61 62
        self._is_initialized_for_program = False
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
63
        self._block_state = BlockState()
64 65 66
        # Graph related data members
        self._is_initialized_for_graph = False
        self._serial_graph = None
67 68
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
69 70 71
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
        # Other data members
72 73
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
74 75
        self._serial_ordered_nodes = []
        self._tensor_id_to_tensor_node_ids = {}
76

77
        # Distributed programs
78 79 80 81 82 83
        self._dist_main_programs = dist_main_progs
        if not self._dist_main_programs:
            self._dist_main_programs = {}
        self._dist_startup_programs = dist_startup_progs
        if not self._dist_startup_programs:
            self._dist_startup_programs = {}
84

85 86 87 88 89 90 91 92 93 94
    @property
    def serial_program(self):
        return self._serial_program

    @property
    def serial_graph(self):
        return self._serial_graph

    @serial_program.setter
    def serial_program(self, program):
95 96
        # assert self._serial_program is None, \
        #     "This distributed context has already been realted to a serial program"
97 98
        self._serial_program = program

99 100 101 102
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

103 104 105 106 107 108 109 110
    @property
    def process_meshes(self):
        return self._process_meshes

    @property
    def dist_op_context(self):
        return self._dist_op_context

111 112 113 114
    @property
    def block_state(self):
        return self._block_state

115 116 117 118 119 120 121 122
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

123 124 125 126 127
    @property
    def is_annotation(self):
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
        inner_serial_tensor_id = inner_serial_tensor.desc.id()
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
        inner_serial_op_id = inner_serial_op.desc.id()
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
146 147 148 149 150 151 152 153 154 155 156
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor
            else:
                return None
157 158

    def get_dist_tensor_for_graph(self, serial_tensor_node):
159
        serial_tensor_node_id = _node_id(serial_tensor_node)
160 161
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

162 163 164 165 166 167 168 169 170 171 172 173
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
174

175 176 177 178 179
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

180
    def get_dist_op_for_graph(self, serial_op_node):
181
        serial_op_node_id = _node_id(serial_op_node)
182
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
183 184 185 186 187 188 189

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
190 191 192 193 194 195 196
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
197

198 199 200 201 202 203 204
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

205 206 207 208 209
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
210
        serial_tensor_node_id = _node_id(serial_tensor_node)
211 212 213 214 215 216 217
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

218 219 220 221 222 223 224 225 226 227 228 229
    # def set_tensor_dist_attr_for_graph(self, serial_tensor_node, dist_attr):
    #     assert serial_tensor_node.is_var() and \
    #         serial_tensor_node.var() is not None
    #     serial_tensor_id = serial_tensor_node.node.original_desc_id()
    #     dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
    #     assert dist_tensor is not None, \
    #         "The distributed tensor of the program has not been added to this context."
    #     serial_tensor_node_id = serial_tensor_node.id()
    #     new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
    #                                         dist_attr)
    #     self._dist_tensors_for_graph[serial_tensor_node_id] = new_dist_tensor

230 231 232 233 234 235
    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
236 237 238 239 240 241
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
242

243 244 245 246 247 248 249
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

250 251 252 253 254
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
255
        serial_op_node_id = _node_id(serial_op_node)
256 257 258 259 260 261
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

262 263 264 265 266 267 268 269 270 271 272
    # def set_op_dist_attr_for_graph(self, serial_op_node, dist_attr):
    #     assert serial_op_node.is_op() and \
    #         serial_op_node.op() is not None
    #     serial_op_id = serial_op_node.node.original_desc_id()
    #     dist_op = self._dist_ops_for_program.get(serial_op_id, None)
    #     assert dist_op is not None, \
    #         "The distributed operator of the program has not been added to this context."
    #     serial_op_node_id = serial_op_node.id()
    #     new_dist_op = DistributedOperator(dist_op.serial_op, dist_attr)
    #     self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

273 274
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
275
            serial_tensor_node_id = _node_id(serial_node)
276 277 278 279 280 281 282
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
283
            serial_op_node_id = _node_id(serial_node)
284 285 286 287 288 289
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    def init_dist_attr_for_program(self):
        assert self._serial_program, \
            "Please set the program of this context before initializing its distribute attributes."
        if self._is_initialized_for_program:
            return
        # Copy the dist tensors and dist ops annotated by users from the default context
        default_ctx = get_default_distributed_context()
        self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        for block in self._serial_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
        self._is_initialized_for_program = True

321 322 323
    def order_nodes_by_program_order(self):
        def _contains(nodes, target_node):
            for node in nodes:
324
                if _node_id(node) == _node_id(target_node):
325 326 327
                    return True
            return False

328 329 330 331 332 333 334
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        # for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
335 336
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
337
                serial_ordered_tensor_nodes.append(node)
338
            if node.is_op() and node.op() is not None:
339 340 341 342 343 344 345 346 347 348 349
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
        for op_node in serial_ordered_op_nodes:
350 351 352 353 354 355
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
                    and not _contains(self._serial_ordered_nodes, tensor_node):
                    tensor_nodes.append(tensor_node)
356
                    new_serial_ordered_tensor_nodes.append(tensor_node)
357 358 359
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
            self._serial_ordered_nodes.extend(tensor_nodes)
            self._serial_ordered_nodes.append(op_node)
360
            new_serial_ordered_op_nodes.append(op_node)
361 362 363 364 365 366
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
                    and not _contains(self._serial_ordered_nodes, tensor_node):
                    tensor_nodes.append(tensor_node)
367 368
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
369
            self._serial_ordered_nodes.extend(tensor_nodes)
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
387

388 389 390 391 392 393
    def init_dist_attr_for_graph(self):
        assert self._is_initialized_for_program, \
            "The program must be initialized before initializing the distributed attributes for its graph."
        if self._is_initialized_for_graph:
            return
        # Convert program to graph
394
        set_flags({"FLAGS_convert_all_blocks": True})
395 396
        self._serial_graph = framework.IrGraph(
            core.Graph(self._serial_program.desc))
397 398
        self.order_nodes_by_program_order()
        for node in self.serial_ordered_nodes:
399
            if node.is_var() and node.var() is not None:
400 401 402 403 404 405 406
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
407 408
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
409 410
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
411
                serial_tensor_node_id = _node_id(node)
412 413 414 415
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
416
            if node.is_op() and node.op() is not None:
417 418 419 420 421 422 423
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
424
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
425 426
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
427
                serial_op_node_id = _node_id(node)
428 429 430
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
431 432 433 434 435 436 437 438 439 440 441 442 443 444
        self._is_initialized_for_graph = True

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

    def copy_dist_attr_from_graph_to_program(self):
        assert self._is_initialized_for_program and self._is_initialized_for_graph, \
            "Both program and graph must be initialized."
        updated_tensors = {}
445 446
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
447 448
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
449
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
450
                updated = updated_tensors.get(tensor_id, False)
451 452 453 454 455 456 457
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
458
                    updated_tensors[tensor_id] = True
459
            if node.is_op() and node.op() is not None:
460
                op_id = self._node_id_to_op_id[_node_id(node)]
461 462 463
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
464 465 466 467 468 469 470 471 472 473 474 475 476
        # TODO: the completion algorithm will skip orphan tensors, 
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
477 478 479 480 481

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
482 483 484
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
505
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
506 507 508 509 510 511 512 513 514 515 516 517 518
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
            for arg_name in serial_op.output_arg_names:
519 520 521
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1

    def validate_dist_attr_for_program(self):
        if not self._is_initialized_for_program:
            assert False, \
                "Program must be initialized before validating its distributed attributes"
        for block in self.serial_program.blocks:
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
                if (dist_tensor is not None) and (
                        not dist_tensor.validate_dist_attr()):
                    assert False, "Tensor {} has a wrong distributed attributes {}.".format(
                        dist_tensor.serial_tensor.name, dist_tensor.dist_attr)
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
                    assert False, "Operator {} has a wrong distributed attributes {}.".format(
                        dist_op.serial_op.type, dist_tensor.dist_attr)
        return True

Z
zhaoyingli 已提交
552 553 554 555 556
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
557 558
            if k == "_serial_program" or k == "_serial_graph" \
                or k == "_dist_main_programs" or k == "_dist_startup_programs" \
559 560
                or k == "_serial_ordered_nodes" or k == "_serial_ordered_tensor_nodes" \
                or k == "_serial_ordered_op_nodes":
Z
zhaoyingli 已提交
561 562 563
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
564 565 566 567

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
568 569
        return result

570 571 572 573 574 575 576 577 578

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
579
        self._main_block = None
580
        self._dst_startup_program = None
581
        self._startup_block = None
582 583
        self._cur_src_op = None
        self._cur_dist_attr = None
584
        self.grad_op_id_to_op_id = {}
585
        self.grad_var_to_var = defaultdict(dict)
586
        self._work_block = None
587
        self.already_init_sync_vars = set()
588 589
        self.varname_mapping = None
        self.rank_id = None
590

Z
zhaoyingli 已提交
591 592 593 594 595
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
596 597 598 599
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
600 601 602 603 604
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

605 606
    @property
    def dst_main_program(self):
607 608
        return self._dst_main_program

609 610 611 612
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
613

614 615 616
    @property
    def main_block(self):
        return self._main_block
617

618 619 620
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
621

622 623 624 625
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
626

627 628 629
    @property
    def startup_block(self):
        return self._startup_block
630

631 632 633 634
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
635

636 637 638 639
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
640

641 642 643
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
644 645
        return self._cur_src_op

646
    def prepare_context(self, src_op):
647

648
        self._cur_src_op = src_op
649 650 651 652 653 654

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
655 656
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
657 658 659 660 661 662 663
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
664 665
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
666 667 668
            koutputs[output_name] = varnames

        return kinputs, koutputs
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712


class BlockState(object):
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)