test_activation_op.py 16.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
K
Kexin Zhao 已提交
17
import paddle.fluid.core as core
Q
qijun 已提交
18
from op_test import OpTest
A
Abhinav Arora 已提交
19
from scipy.special import expit
Q
qijun 已提交
20 21 22 23 24 25 26 27


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
28
        self.outputs = {'Out': np.exp(self.inputs['X'])}
Q
qijun 已提交
29 30 31 32 33

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
34
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
35 36 37 38 39 40 41 42


class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
43
        self.outputs = {'Out': 1 / (1 + np.exp(-self.inputs['X']))}
Q
qijun 已提交
44 45 46 47

    def test_check_output(self):
        self.check_output()

48
    def test_check_grad(self):
F
fengjiayi 已提交
49
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
50 51


52 53 54 55 56 57
class TestLogSigmoid(OpTest):
    def setUp(self):
        self.op_type = "logsigmoid"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
58
        self.outputs = {'Out': np.log(1 / (1 + np.exp(-self.inputs['X'])))}
59 60 61 62 63

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
64
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
65 66


67 68 69 70 71 72
class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
73
        self.outputs = {'Out': np.tanh(self.inputs['X'])}
74 75 76 77 78

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
79
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
80 81


K
Kavya Srinet 已提交
82 83 84 85 86 87
class TestTanhShrink(OpTest):
    def setUp(self):
        self.op_type = "tanh_shrink"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32")
        }
F
fengjiayi 已提交
88
        self.outputs = {'Out': self.inputs['X'] - np.tanh(self.inputs['X'])}
K
Kavya Srinet 已提交
89 90 91 92 93

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
94
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
K
Kavya Srinet 已提交
95 96


97 98 99 100 101 102 103 104 105 106 107
class TestHardShrink(OpTest):
    def setUp(self):
        self.op_type = "hard_shrink"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        threshold = 0.5

        self.inputs = {'X': x}
        self.attrs = {'lambda': threshold}

        t = np.copy(x)
        t[(t >= -threshold) & (t <= threshold)] = 0
F
fengjiayi 已提交
108
        self.outputs = {'Out': t}
109 110 111 112 113

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
114
        self.check_grad(['X'], 'Out', max_relative_error=0.005)
115 116


117 118 119 120 121 122 123 124 125 126 127
class TestSoftShrink(OpTest):
    def setUp(self):
        self.op_type = "softshrink"
        lambda_val = 0.1
        self.attrs = {'lambda': lambda_val}
        self.inputs = {
            'X': np.random.uniform(0.25, 10, [4, 4]).astype("float32")
        }
        y = np.copy(self.inputs['X'])
        y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * (
            y - lambda_val)
F
fengjiayi 已提交
128
        self.outputs = {'Out': y}
129 130 131 132 133

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
134
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
135 136


137 138 139 140 141 142
class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
143
        self.outputs = {'Out': np.sqrt(self.inputs['X'])}
144 145 146 147 148

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
149
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
150 151 152 153 154


class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
Q
qijun 已提交
155 156 157 158 159 160
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
161
        self.inputs = {'X': x}
F
fengjiayi 已提交
162
        self.outputs = {'Out': np.abs(self.inputs['X'])}
163 164 165 166 167

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
168
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
169 170


D
dzhwinter 已提交
171 172 173 174 175
class TestCeil(OpTest):
    def setUp(self):
        self.op_type = "ceil"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
F
fengjiayi 已提交
176
        self.outputs = {'Out': np.ceil(self.inputs['X'])}
D
dzhwinter 已提交
177 178 179 180 181

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
182
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
183 184 185 186 187 188 189


class TestFloor(OpTest):
    def setUp(self):
        self.op_type = "floor"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
Q
Qiao Longfei 已提交
190
        self.outputs = {'Out': np.floor(self.inputs['X'])}
D
dzhwinter 已提交
191 192 193 194 195

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
196
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
197 198


C
add cos  
chengduoZH 已提交
199 200 201 202 203
class TestCos(OpTest):
    def setUp(self):
        self.op_type = "cos"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
C
add sin  
chengduoZH 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        self.outputs = {'Out': np.cos(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


class TestSin(OpTest):
    def setUp(self):
        self.op_type = "sin"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
        self.outputs = {'Out': np.sin(self.inputs['X'])}
C
add cos  
chengduoZH 已提交
219 220 221 222 223 224 225 226

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


D
dzhwinter 已提交
227 228 229 230 231
class TestRound(OpTest):
    def setUp(self):
        self.op_type = "round"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
F
fengjiayi 已提交
232
        self.outputs = {'Out': np.round(self.inputs['X'])}
D
dzhwinter 已提交
233 234 235 236 237

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
238
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
239 240


Q
qijun 已提交
241
class TestRelu(OpTest):
242
    def setUp(self):
Q
qijun 已提交
243
        self.op_type = "relu"
K
Kexin Zhao 已提交
244 245 246 247
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
248 249
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
250 251 252 253
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
254 255 256 257 258

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
K
Kexin Zhao 已提交
259 260
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
261
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
262

K
Kexin Zhao 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276
    def init_dtype(self):
        pass


class TestFP16Relu(TestRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

277 278 279 280 281

class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
282 283
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
284 285
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
286
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
Q
qijun 已提交
287 288

        self.inputs = {'X': x}
289 290 291 292
        self.attrs = {'t_min': t_min, 't_max': t_max}
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
F
fengjiayi 已提交
293
        self.outputs = {'Out': t}
294 295 296 297 298

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
299
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
300 301


302
class TestRelu6(OpTest):
K
Kavya Srinet 已提交
303
    def setUp(self):
304 305 306 307 308 309 310 311 312
        self.op_type = "relu6"
        x = np.random.uniform(-1, 1, [4, 10]).astype("float32")
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02

        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
K
Kavya Srinet 已提交
313
        self.outputs = {
F
fengjiayi 已提交
314
            'Out': np.minimum(np.maximum(self.inputs['X'], 0), threshold)
K
Kavya Srinet 已提交
315 316 317 318 319 320
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
321
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
K
Kavya Srinet 已提交
322 323


324 325 326
class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
Q
qijun 已提交
327
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
328
        threshold = 2.0
Q
qijun 已提交
329 330 331
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
332 333 334 335 336
        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
F
fengjiayi 已提交
337
        self.outputs = {'Out': np.log((np.exp(t) + 1))}
338 339 340 341 342

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
343
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
344 345


346 347 348 349 350 351 352 353 354 355
class TestELU(OpTest):
    def setUp(self):
        self.op_type = "elu"
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
        alpha = 1.
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {
F
fengjiayi 已提交
356
            'Out': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
357 358 359 360 361 362
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
363
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
364 365


Q
qijun 已提交
366 367 368 369
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
F
fengjiayi 已提交
370
        self.outputs = {'Out': np.reciprocal(self.inputs['X'])}
Q
qijun 已提交
371 372 373 374 375

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
376
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
377 378 379 380 381 382 383 384


class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
385
        self.outputs = {'Out': np.log(self.inputs['X'])}
Q
qijun 已提交
386 387 388 389 390

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
391
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
392 393 394 395 396 397 398 399


class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
400
        self.outputs = {'Out': np.square(self.inputs['X'])}
Q
qijun 已提交
401 402 403 404 405

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
406
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
407 408


409 410 411 412
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
Y
Yang Yang(Tony) 已提交
413
        self.attrs = {'factor': 3.0}
F
fengjiayi 已提交
414
        self.outputs = {'Out': np.power(self.inputs['X'], 3)}
415 416 417 418 419

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
420
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
421 422 423 424 425 426 427 428 429 430 431


class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
F
fengjiayi 已提交
432
        self.outputs = {'Out': scale_b * np.tanh(self.inputs['X'] * scale_a)}
433 434 435 436

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
437
    def test_check_grad(self):
F
fengjiayi 已提交
438
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
439 440


K
kexinzhao 已提交
441 442 443 444
class TestSoftplus(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.inputs = {
Y
Yu Yang 已提交
445
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float64")
K
kexinzhao 已提交
446
        }
F
fengjiayi 已提交
447
        self.outputs = {'Out': np.log(1 + np.exp(self.inputs['X']))}
K
kexinzhao 已提交
448 449 450 451 452

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
453
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
K
kexinzhao 已提交
454 455


456 457 458 459 460 461 462
class TestSoftsign(OpTest):
    def setUp(self):
        self.op_type = "softsign"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {
F
fengjiayi 已提交
463
            'Out': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X']))
464 465 466 467 468 469
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
470
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
471 472


473 474 475 476 477 478 479 480 481 482 483 484
class TestThresholdedRelu(OpTest):
    def setUp(self):
        self.op_type = "thresholded_relu"
        threshold = 0.25
        self.relative_error = 0.005
        X = np.random.uniform(-1, 1, [11, 17]).astype("float32")

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2

        self.inputs = {'X': X}
        self.attrs = {'threshold': threshold}
F
fengjiayi 已提交
485
        self.outputs = {'Out': (X > threshold) * X}
486 487 488 489 490

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
491
        self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
492 493


494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
class TestHardSigmoid(OpTest):
    def setUp(self):
        self.op_type = "hard_sigmoid"
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        self.inputs = {'X': X}
        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
F
fengjiayi 已提交
513
        self.outputs = {'Out': np.maximum(0.0, np.minimum(1.0, temp))}
514 515 516 517 518

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
519
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
520 521


A
Abhinav Arora 已提交
522 523 524 525 526 527
class TestSwish(OpTest):
    def setUp(self):
        self.op_type = "swish"
        X = np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        self.inputs = {'X': X}
        self.attrs = {'beta': 2.3}
F
fengjiayi 已提交
528
        self.outputs = {'Out': X * expit(self.attrs['beta'] * X)}
A
Abhinav Arora 已提交
529 530 531 532 533

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
534
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
535 536


537
#--------------------test MKLDNN--------------------
538
class TestMKLDNNRelu(TestRelu):
539
    def setUp(self):
540 541
        super(TestMKLDNNRelu, self).setUp()

542 543 544
        x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
545
        out = np.maximum(x, 0)
546

547 548 549
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {"use_mkldnn": True}
550 551


552
class TestMKLDNNTanh(TestTanh):
553
    def setUp(self):
554 555
        super(TestMKLDNNTanh, self).setUp()

556 557 558 559
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
        }
        self.outputs = {'Out': np.tanh(self.inputs['X'])}
K
Krzysztof Binias 已提交
560
        self.attrs = {"use_mkldnn": True}
561 562


563
class TestMKLDNNSqrt(TestSqrt):
564
    def setUp(self):
565 566
        super(TestMKLDNNSqrt, self).setUp()

567 568 569 570
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
        }
        self.outputs = {'Out': np.sqrt(self.inputs['X'])}
K
Krzysztof Binias 已提交
571
        self.attrs = {"use_mkldnn": True}
572 573


574
class TestMKLDNNAbs(TestAbs):
575
    def setUp(self):
576 577
        super(TestMKLDNNAbs, self).setUp()

578 579 580 581 582
        x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        self.inputs = {'X': x}
        self.outputs = {'Out': np.abs(self.inputs['X'])}
K
Krzysztof Binias 已提交
583
        self.attrs = {"use_mkldnn": True}
584 585


Q
qijun 已提交
586 587
if __name__ == "__main__":
    unittest.main()