elementwise_mkldnn_op.h 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <string>
17 18 19
#include <unordered_map>

#include "paddle/fluid/framework/data_layout_transform.h"
20 21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

27 28 29
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
using framework::DataLayout;
using framework::Tensor;

inline std::vector<int64_t> CalculateBroadcastedDims(const Tensor* x,
                                                     const Tensor* y) {
  const auto src_tz = phi::vectorize(x->dims());
  const auto dst_tz = phi::vectorize(y->dims());

  size_t j = 0;
  std::vector<int64_t> dst_tz_ex(src_tz.size(), 1);
  for (size_t i = 0; i < src_tz.size(); ++i) {
    dst_tz_ex[i] = (src_tz[i] != dst_tz[j]) ? 1 : dst_tz[j++];
    if (j == dst_tz.size()) break;
  }

  return dst_tz_ex;
}
47 48 49

template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNKernel : public framework::OpKernel<T> {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
 private:
  dnnl::post_ops get_post_ops(const framework::ExecutionContext& ctx) const {
    dnnl::post_ops post_operations;
    if (ctx.HasAttr("activation_type")) {
      const float scale = ctx.HasAttr("activation_scale")
                              ? ctx.Attr<float>("activation_scale")
                              : 1.0f;
      const float alpha = ctx.HasAttr("activation_alpha")
                              ? ctx.Attr<float>("activation_alpha")
                              : 0.0f;
      const float beta = ctx.HasAttr("activation_beta")
                             ? ctx.Attr<float>("activation_beta")
                             : 0.0f;

      static std::unordered_map<std::string, dnnl::algorithm> algo_map = {
          {"relu", dnnl::algorithm::eltwise_relu},
          {"tanh", dnnl::algorithm::eltwise_tanh},
          {"leaky_relu", dnnl::algorithm::eltwise_relu},
          {"swish", dnnl::algorithm::eltwise_swish},
          {"hardswish", dnnl::algorithm::eltwise_hardswish},
          {"sqrt", dnnl::algorithm::eltwise_sqrt},
          {"abs", dnnl::algorithm::eltwise_abs},
          {"clip", dnnl::algorithm::eltwise_clip},
          {"gelu", dnnl::algorithm::eltwise_gelu_erf},
          {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
          {"relu6", dnnl::algorithm::eltwise_bounded_relu},
          {"sigmoid", dnnl::algorithm::eltwise_logistic}};

      const auto& activation_type =
          algo_map.find(ctx.Attr<std::string>("activation_type"));

      if (activation_type != algo_map.end()) {
        post_operations.append_eltwise(scale, activation_type->second, alpha,
                                       beta);
      }
    }
    return post_operations;
  }

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
    const auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");

    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    float scale_o = ctx.Attr<float>("Scale_out");
    int axis = ctx.Attr<int>("axis");

104 105 106
    platform::BinaryMKLDNNHandler<T> handler(
        BINARY_OP, axis, mkldnn_engine, ctx.GetPlace(), x, y, z, scale_x,
        scale_y, scale_o, get_post_ops(ctx));
107 108 109

    const auto src_x_memory = handler.AcquireSrcMemory(x);
    const auto src_y_memory = handler.AcquireSecondSrcMemory(y);
110 111 112 113 114 115 116 117 118
    // (jczaja) For Inplace src and dst should be the same memory object.
    // So x should share buffer with z. But UT mechanics is testing inplace
    // execution for this op not checking that x can be bradcasted to match in
    // shape y tensor.
    // This is wrong as when x is to be broadcasted then z(out) will match the
    // shape of y which is bigger than x. Hence if x is smaller in shape than z
    // and they share a buffer (of
    // shape x) then this buffer is not big enough to hold result of elementwise
    // operation.
119 120
    const bool reuse_x_memopry =
        x->numel() == z->numel() && x->IsSharedBufferWith(*z);
121
    std::shared_ptr<dnnl::memory> dst_memory;
122 123 124 125 126 127 128 129 130 131 132 133 134
    if (reuse_x_memopry) {
      dst_memory = src_x_memory;
      // NOTE(chenfeiyu): when the output reuses memory from other tensor rather
      // than allocate its own, it's still need to take care of its data type.
      // Unfortunately, paddle's operator only infers the output' shape, but not
      // the data type. mutable_data<T> takes care of allocation and data type
      // normally, but if the memory is already allocated and there is no need
      // to re-allocate, it just set the data type. So this it added there to
      // get the right data type.
      z->mutable_data<T>(ctx.GetPlace());
    } else {
      dst_memory = handler.AcquireDstMemory(z);
    }
135 136 137

    const auto binary_prim = handler.AcquireForwardPrimitive();

138
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
139 140 141 142 143 144 145 146 147 148 149 150 151

    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC_0, *src_x_memory},
        {DNNL_ARG_SRC_1, *src_y_memory},
        {DNNL_ARG_DST, *dst_memory}};

    binary_prim->execute(astream, args);
    astream.wait();

    z->set_layout(DataLayout::kMKLDNN);
    z->set_format(platform::GetMKLDNNFormat(*dst_memory));
  }
};
152

153 154 155 156 157 158
template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;
159

160 161 162
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    int axis = ctx.Attr<int>("axis");

    auto tz = phi::vectorize<int64_t>(dout->dims());
    auto proto_type_dout = framework::TransToProtoVarType(dout->dtype());

    platform::ReorderMKLDNNHandler reorder_handler(
        tz, proto_type_dout, framework::ToMKLDNNDataType(proto_type_dout),
        onednn_engine);

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        dout->format(), platform::to_void_cast(dout->data<T>()));

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    if (dx) {
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
        dst_memory = reorder_handler.AcquireDstMemory(dx, dout->format(),
                                                      ctx.GetPlace());
        auto reorder_p =
            reorder_handler.AcquireReorder(dst_memory, reorder_src_memory_p);
        platform::RecordEvent record_reorder(
            "int_reorder", platform::TracerEventType::UserDefined, 2,
            platform::EventRole::kUniqueOp);

        reorder_p->execute(astream, *reorder_src_memory_p, *dst_memory);
201
      } else {  // elementwise_mul & elementwise_div
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        platform::BinaryMKLDNNHandler<T> binary_handler(
            BINARY_OP, axis, onednn_engine, ctx.GetPlace(), dout, y, dx, 1.0f,
            1.0f, 1.0f);

        const auto src_dout_memory = binary_handler.AcquireSrcMemory(dout);
        const auto src_y_memory = binary_handler.AcquireSecondSrcMemory(y);
        dst_memory = binary_handler.AcquireDstMemory(dx);

        const auto binary_prim = binary_handler.AcquireForwardPrimitive();

        const std::unordered_map<int, dnnl::memory> args = {
            {DNNL_ARG_SRC_0, *src_dout_memory},
            {DNNL_ARG_SRC_1, *src_y_memory},
            {DNNL_ARG_DST, *dst_memory}};

        binary_prim->execute(astream, args);
      }
      astream.wait();

      dx->set_layout(framework::DataLayout::kMKLDNN);
      dx->set_format(platform::GetMKLDNNFormat(*dst_memory));
    }

    if (dy) {
      dnnl::primitive_attr broadcast_reduction_attr;
      std::shared_ptr<dnnl::memory> broadcast_src_memory;
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
        if (dout->dims() == dy->dims()) {
          auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
              dy, dout->format(), ctx.GetPlace());

          dnnl::primitive_attr reorder_attr;
          std::vector<float> scales(1);
          scales[0] = (BINARY_OP == dnnl::algorithm::binary_add) ? 1 : -1;
          reorder_attr.set_output_scales(0, scales);
          auto reorder_p = std::make_shared<dnnl::reorder>(
              *(reorder_src_memory_p), *(reorder_dst_memory_p), reorder_attr);
          platform::RecordEvent record_reorder(
              "int_reorder", platform::TracerEventType::UserDefined, 2,
              platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *reorder_src_memory_p,
                             *reorder_dst_memory_p);

          dst_memory = reorder_dst_memory_p;
        } else {
          broadcast_src_memory = reorder_src_memory_p;
        }
253
      } else {  // elementwise_mul & elementwise_div
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        std::unordered_map<int, dnnl::memory> args;
        std::shared_ptr<dnnl::binary> binary_prim;
        std::shared_ptr<dnnl::memory> post_op_memory;
        std::shared_ptr<dnnl::memory> src_0_memory;
        std::shared_ptr<dnnl::memory> src_1_memory;

        platform::BinaryMKLDNNHandler<T> binary_handler(
            dnnl::algorithm::binary_mul, axis, onednn_engine, ctx.GetPlace(),
            dout, x, nullptr, 1.0f, 1.0f, 1.0f);

        src_1_memory = binary_handler.AcquireSecondSrcMemory(x);

        if (BINARY_OP == dnnl::algorithm::binary_div) {
          platform::BinaryMKLDNNHandler<T> post_op_binary_handler(
              dnnl::algorithm::binary_div, axis, onednn_engine, ctx.GetPlace(),
              y, y, nullptr, 1.0f, 1.0f, 1.0f);

          post_op_memory = post_op_binary_handler.AcquireSrcMemory(y);

          dnnl::post_ops po;
          po.append_binary(dnnl::algorithm::binary_div,
                           post_op_memory->get_desc());

          binary_handler = platform::BinaryMKLDNNHandler<T>(
              dnnl::algorithm::binary_mul, axis, onednn_engine, ctx.GetPlace(),
              dout, out, nullptr, -1.0f, 1.0f, 1.0f, po);

          src_1_memory = binary_handler.AcquireSecondSrcMemory(out);
        }

        src_0_memory = binary_handler.AcquireSrcMemory(dout);

        const auto dst_dy_memory = (dout->dims() == dy->dims())
                                       ? binary_handler.AcquireDstMemory(dy)
                                       : binary_handler.AcquireDstMemory();

        binary_prim = binary_handler.AcquireForwardPrimitive();
        args = {{DNNL_ARG_SRC_0, *src_0_memory},
                {DNNL_ARG_SRC_1, *src_1_memory},
                {DNNL_ARG_DST, *dst_dy_memory}};

        if (BINARY_OP == dnnl::algorithm::binary_div)
          args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                       *post_op_memory});

        binary_prim->execute(astream, args);
        broadcast_src_memory = dst_dy_memory;
        dst_memory = dst_dy_memory;
      }
      astream.wait();
      dy->set_layout(DataLayout::kMKLDNN);

      if (dout->dims() != dy->dims()) {
        // Broadcasting
        if (BINARY_OP == dnnl::algorithm::binary_sub) {
          dnnl::post_ops po;
          po.append_eltwise(1.0f, dnnl::algorithm::eltwise_linear, -1.0f, 0);
          broadcast_reduction_attr.set_post_ops(po);
        }

        platform::ReductionMKLDNNHandler<T> reduction_handler(
            dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
            ctx.GetPlace(), dout, dy, CalculateBroadcastedDims(dout, dy),
            broadcast_reduction_attr);
        dst_memory = reduction_handler.AcquireDstMemory(dy);

        auto reduction_p = reduction_handler.AcquireForwardPrimitive();

        reduction_p->execute(astream, {
                                          {DNNL_ARG_SRC, *broadcast_src_memory},
                                          {DNNL_ARG_DST, *dst_memory},
                                      });
        astream.wait();
        dy->set_format(platform::GetMKLDNNFormat(dst_memory->get_desc().reshape(
            phi::vectorize<int64_t>(dy->dims()))));
      } else {
        dy->set_format(platform::GetMKLDNNFormat(*dst_memory));
      }
    }
  }
};
335 336
}  // namespace operators
}  // namespace paddle