conv_op.cc 18.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
47 48 49
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
50 51 52 53 54 55 56 57 58
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
59

Y
Yang Yu 已提交
60
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
61
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
62
                    "channels * groups.");
C
chengduoZH 已提交
63
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
64
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
65 66 67
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
68
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
69 70 71
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
72
  }
73
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
74
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
75 76
}

77 78
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
79 80
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
81
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
82
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
83
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
84 85
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
86
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
87
  if (framework::CanCUDNNBeUsed(ctx)) {
88
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
89 90
  }
#endif
91
#ifdef PADDLE_WITH_MKLDNN
92
  if (library == framework::LibraryType::kPlain &&
93
      platform::CanMKLDNNBeUsed(ctx)) {
94
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
95
    layout = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
96
    customized_type_value = kConvMKLDNNFP32;
97
  }
98
#endif
99

Y
Yu Yang 已提交
100 101
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
  auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
K
Kexin Zhao 已提交
102 103 104 105
  PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                    "input and filter data type should be consistent");

  if (input_data_type == framework::proto::VarType::FP16) {
106
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
107 108 109
                      "float16 can only be used when CUDNN is used");
  }

110
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
X
Xin Pan 已提交
111
                                 library, customized_type_value);
112 113
}

Y
Yu Yang 已提交
114
void Conv2DOpMaker::Make() {
115 116 117 118
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
119 120
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
121 122 123 124
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
125
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
126
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
127 128
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
129 130
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
131
           "input image channels divided by the groups.");
132 133 134 135 136
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
137 138 139
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
140
           "Used with fuse_residual_connection fusion.")
141
      .AsDispensable();
Y
Yihua Xu 已提交
142 143 144
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
145 146 147 148
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
149
      .SetDefault({1, 1});
C
chengduoZH 已提交
150 151 152 153
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
154 155 156
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
157
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
158 159 160 161
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
162
      .SetDefault(1);
C
chengduoZH 已提交
163
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
164 165
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
166
                            "convolution operator.")
C
chengduoZH 已提交
167
      .SetDefault({1, 1});
168 169 170 171
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
172 173 174
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
175 176
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
177
  AddAttr<bool>("fuse_residual_connection",
178
                "(bool, default false) Only used in mkldnn kernel. Used "
179 180
                "whenever convolution output is as an input to residual "
                "connection.")
181
      .SetDefault(false);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
198 199 200 201 202
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
203
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
204 205
Convolution Operator.

C
chengduoZH 已提交
206
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
207
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
208
parameters is checked in the infer-shape.
C
chengduoZH 已提交
209
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
210
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
211 212 213 214 215 216
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
217 218 219 220
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
221 222
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
223
  Output:
C
chengduoZH 已提交
224 225 226 227 228 229
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
230
)DOC");
Q
qingqing01 已提交
231
  Apply();
C
chengduoZH 已提交
232 233
}

Y
Yu Yang 已提交
234
void Conv3DOpMaker::Make() {
235 236 237 238
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
239 240
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
241
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
242
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
243 244 245
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
246
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
247
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
248 249
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
250 251 252
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
253
           "input image channels divided by the groups.");
254 255 256 257 258
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
259 260 261
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
262 263 264 265
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
266
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
267 268 269 270
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
271 272 273
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
274
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
275 276 277 278
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
279
      .SetDefault(1);
C
chengduoZH 已提交
280
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
281 282
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
283
                            "convolution operator.")
C
chengduoZH 已提交
284
      .SetDefault({1, 1, 1});
285 286 287 288
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
289 290 291
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
292 293 294 295 296 297 298
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
314 315 316 317 318
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
319
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
320 321
Convolution3D Operator.

C
chengduoZH 已提交
322
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
323
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
324
parameters is checked in the infer-shape.
C
chengduoZH 已提交
325
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
326
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
327 328 329 330 331 332
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
333 334 335 336
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
337 338
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
339
  Output:
C
chengduoZH 已提交
340 341 342 343 344 345 346
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
347
)DOC");
Q
qingqing01 已提交
348
  Apply();
C
chengduoZH 已提交
349 350
}

C
chengduoZH 已提交
351 352 353 354 355 356 357 358 359 360 361
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

362 363
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
364 365
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
366
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
367 368 369 370
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
371
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
372
  if (framework::CanCUDNNBeUsed(ctx)) {
373
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
374 375
  }
#endif
376 377 378 379
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
380
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
381
    customized_type_value = kConvMKLDNNFP32;
382
  }
383
#endif
384

Y
Yu Yang 已提交
385 386 387
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_,
                                 customized_type_value);
388 389
}

C
chengduoZH 已提交
390 391 392 393
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
394
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
C
chengduo 已提交
395
                  ops::ConvOpInferVarType,
396 397
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
398 399

// depthwise convolution op
Y
Yang Yang 已提交
400
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
401 402
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
403

Y
Yang Yang 已提交
404
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
405
                  ops::ConvOpInferVarType,
406 407
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
408

409 410
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
411
REGISTER_OP_CPU_KERNEL(
412
    depthwise_conv2d,
X
xzl 已提交
413 414 415 416
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
417
    depthwise_conv2d_grad,
X
xzl 已提交
418 419
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
420

C
chengduoZH 已提交
421
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
422 423 424 425 426 427
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
428 429

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
430 431 432 433 434 435
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);