dlpack_tensor.cc 6.4 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
W
wanghuancoder 已提交
14
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/data_type.h"
W
wanghuancoder 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace platform {
struct bfloat16;
struct float16;
}  // namespace platform
}  // namespace paddle

S
sneaxiy 已提交
24 25 26 27 28 29 30
namespace paddle {
namespace framework {

namespace internal {
template <typename T>
static ::DLDataType GetDLDataTypeCode() {
  ::DLDataType dtype;
31
  if (std::is_same<T, platform::complex<float>>::value ||
C
chentianyu03 已提交
32
      std::is_same<T, platform::complex<double>>::value) {
33 34 35 36 37 38 39 40 41
    // The current dlpack library version is v0.2, and does not define
    // kDLComplex value. But kDLComplex is defined by 5U in v0.4, so we set
    // dtype.code to 5U directly here. After the dlpack library version being
    // upgraded to v0.4, it should be written as follow.
    // dtype.code = kDLComplex;
    dtype.code = 5U;
  } else if (std::is_same<T, platform::float16>::value ||
             std::is_same<T, platform::bfloat16>::value ||
             std::is_floating_point<T>::value) {
S
sneaxiy 已提交
42 43 44 45 46 47
    dtype.code = kDLFloat;
  } else if (std::is_unsigned<T>::value) {
    dtype.code = kDLUInt;
  } else if (std::is_integral<T>::value) {
    dtype.code = kDLInt;
  } else {
48 49 50 51
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported data type (%s), only supports float16, float, unsigned "
        "int and int.",
        platform::demangle(typeid(T).name())));
S
sneaxiy 已提交
52 53 54 55 56 57
  }
  dtype.bits = 8 * sizeof(T);
  dtype.lanes = 1;
  return dtype;
}

Y
Yu Yang 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
static std::unordered_map<int, ::DLDataType> CreateDLDataTypeMap() {
  static std::unordered_map<int, ::DLDataType> result;

#define REG_DL_DATA_TYPE(cpp_type, proto_type) \
  result[static_cast<int>(proto_type)] = GetDLDataTypeCode<cpp_type>()

  _ForEachDataType_(REG_DL_DATA_TYPE);
#undef REG_DL_DATA_TYPE
  return result;
}

static DLDataType GetDLDataTypeFromTypeIndex(proto::VarType::Type type) {
  static auto type_to_dtype_map = CreateDLDataTypeMap();
S
sneaxiy 已提交
71
  static auto type_to_dtype_map_end_it = type_to_dtype_map.end();
Y
Yu Yang 已提交
72
  auto it = type_to_dtype_map.find(static_cast<int>(type));
73 74 75
  PADDLE_ENFORCE_NE(it, type_to_dtype_map_end_it,
                    platform::errors::InvalidArgument(
                        "Unsupported data type (%s).", DataTypeToString(type)));
S
sneaxiy 已提交
76 77 78 79 80 81
  return it->second;
#undef REG_DL_DATA_TYPE
}

struct DLContextVisitor : public boost::static_visitor<::DLContext> {
  inline ::DLContext operator()(const platform::CPUPlace &place) const {
S
sneaxiy 已提交
82
    ::DLContext ctx;
S
sneaxiy 已提交
83 84 85 86 87
    ctx.device_type = kDLCPU;
    ctx.device_id = 0;
    return ctx;
  }

88 89 90 91 92
  inline ::DLContext operator()(const platform::XPUPlace &place) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("platform::XPUPlace is not supported"));
  }

93 94 95 96 97
  inline ::DLContext operator()(const platform::NPUPlace &place) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("platform::NPUPlace is not supported"));
  }

98 99 100 101 102
  inline ::DLContext operator()(const platform::NPUPinnedPlace &place) const {
    PADDLE_THROW(platform::errors::Unimplemented(
        "platform::NPUPinnedPlace is not supported"));
  }

S
sneaxiy 已提交
103
  inline ::DLContext operator()(const platform::CUDAPlace &place) const {
104
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
105
    ::DLContext ctx;
S
sneaxiy 已提交
106 107 108 109
    ctx.device_type = kDLGPU;
    ctx.device_id = place.device;
    return ctx;
#else
110 111
    PADDLE_THROW(platform::errors::Unavailable(
        "platform::CUDAPlace is not supported in CPU only version."));
S
sneaxiy 已提交
112 113 114 115
#endif
  }

  inline ::DLContext operator()(const platform::CUDAPinnedPlace &place) const {
116
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
117
    ::DLContext ctx;
S
sneaxiy 已提交
118 119 120 121
    ctx.device_type = kDLCPUPinned;
    ctx.device_id = 0;
    return ctx;
#else
122 123
    PADDLE_THROW(platform::errors::Unavailable(
        "platform::CUDAPinnedPlace is not supported in CPU only version."));
S
sneaxiy 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#endif
  }
};
}  // namespace internal

DLPackTensor::DLPackTensor(const Tensor &tensor, LaneType lanes) {
  // init data, data buffer
  t_.data = const_cast<void *>(tensor.data<void>());

  // init ctx, DLContext type with device_type and device_id
  auto place = tensor.place();
  t_.ctx = boost::apply_visitor(internal::DLContextVisitor(), place);

  // init dtype
  t_.dtype = internal::GetDLDataTypeFromTypeIndex(tensor.type());
  t_.dtype.lanes = lanes;

  // init ndim, tensor rank
  auto &dims = tensor.dims();
  using DimType = decltype(t_.ndim);  // int
  t_.ndim = static_cast<DimType>(dims.size());

  // init shape, tensor dims
  t_.shape = shape_;
  for (DimType i = 0; i < t_.ndim; ++i) {
    t_.shape[i] = dims[i];
  }

  // init strides, nullptr means the tensor is compact
  t_.strides = nullptr;

  // init byte_offset
  t_.byte_offset = 0;
}

6
633WHU 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
::DLManagedTensor *DLPackTensor::ToCudfCompatibleDLManagedTensor() {
  // init shape, tensor dims
  // for DLManagedTensor shape need to be compatible with ndim
  // refer to cupy and cudf, we new int64[ndim]
  auto shape = new int64_t[t_.ndim];
  using DimType = decltype(t_.ndim);  // int
  for (DimType i = 0; i < t_.ndim; ++i) {
    shape[i] = t_.shape[i];
  }
  t_.shape = shape;

  // init strides, nullptr means the tensor is compact
  // refer to cupy and cudf, the compact tensor first dim's strides need to be 1
  // and second dim's strides need to be length of rows of cudf
  // cudf now only support dim=2
174 175 176 177
  PADDLE_ENFORCE_LE(t_.ndim, 2, platform::errors::InvalidArgument(
                                    "cudf now only supports dimension is 2, "
                                    "but received dimension is %d.",
                                    t_.ndim));
6
633WHU 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

  if (t_.ndim > 1)
    t_.strides = new int64_t[2]{1, t_.shape[1]};
  else
    t_.strides = new int64_t[1]{1};

  auto tensor = new DLManagedTensor;
  tensor->dl_tensor = t_;

  tensor->deleter = [](DLManagedTensor *arg) {
    delete[] arg->dl_tensor.shape;
    delete[] arg->dl_tensor.strides;
    delete arg;
  };

  tensor->manager_ctx = nullptr;

  return tensor;
}

S
sneaxiy 已提交
198 199
}  // namespace framework
}  // namespace paddle