pybind.cc 58.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/garbage_collector.h"
28
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
29 30 31
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
32
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
35
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/framework/version.h"
39
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
40
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
42
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
43
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/platform/enforce.h"
48
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
51
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
53
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
56
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
57
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
58
#include "paddle/fluid/pybind/ir.h"
59 60
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
61
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
62
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/pybind/tensor_py.h"
64
#include "paddle/fluid/string/to_string.h"
65

D
Dong Zhihong 已提交
66
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
67
#ifndef _WIN32
Y
Yi Wang 已提交
68
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
69
#endif
Y
Yi Wang 已提交
70 71
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
72 73
#endif

M
minqiyang 已提交
74 75
#include "pybind11/stl.h"

76 77 78 79
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
80 81 82
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

83
namespace paddle {
84
namespace pybind {
85
bool IsCompiledWithCUDA() {
86
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
87 88 89 90 91 92
  return false;
#else
  return true;
#endif
}

93 94 95 96 97 98 99 100
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

101 102 103 104 105 106 107 108
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

109
bool IsCompiledWithBrpc() {
110
#ifndef PADDLE_WITH_DISTRIBUTE
111 112
  return false;
#endif
113 114 115 116 117 118

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
119 120
}

Y
update  
Yancey1989 已提交
121
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
122
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
123 124 125 126 127 128
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
129 130 131 132 133
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

S
sneaxiy 已提交
134 135 136 137 138
template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

139
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
140 141 142
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
143
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
144

145
  m.doc() = "C++ core of PaddlePaddle";
146

147 148 149 150
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

151
  BindException(&m);
Y
Yu Yang 已提交
152

S
sneaxiy 已提交
153
  m.def(
S
sneaxiy 已提交
154
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
155 156 157 158
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
159 160 161
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
162
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
163

S
sneaxiy 已提交
164 165 166
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

167 168 169 170 171 172 173
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
174
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
175 176
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
177
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
178

M
minqiyang 已提交
179
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
180 181 182 183 184 185 186 187
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
188
      .def("_run_backward",
X
Xin Pan 已提交
189
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
190
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
191
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
192
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
193
      .def("_grad_ivar",
M
minqiyang 已提交
194
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
195
           py::return_value_policy::reference)
M
minqiyang 已提交
196
      .def("_copy_to",
P
Paddle CI 已提交
197
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
198 199 200 201 202
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
203
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
204
      .def("_copy_to",
P
Paddle CI 已提交
205
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
206 207 208 209 210
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
211
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
212
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
213
           py::return_value_policy::reference)
214 215 216
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
217
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
218 219 220 221
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
222

223
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
224
      .def(py::init<const std::string &>())
225 226 227 228
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
229 230 231 232 233 234 235 236 237 238
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
239 240 241 242 243 244
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
245
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
246
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
247 248 249 250 251 252
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
253 254
          py::return_value_policy::reference);

X
Xin Pan 已提交
255
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
256
  layer.def(py::init<>())
X
Xin Pan 已提交
257 258 259
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
260
      });
X
Xin Pan 已提交
261

X
polish  
Xin Pan 已提交
262
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
263
      .def(py::init<>())
X
Xin Pan 已提交
264 265
      .def_static(
          "apply",
X
Xin Pan 已提交
266
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
267
              -> std::vector<imperative::VarBase *> {
268 269 270 271 272 273 274 275 276 277 278
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
279 280
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
281 282 283 284 285
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
286

287 288
  BindTracer(&m);

289 290 291
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
292 293
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
294
      .def("_get_dims",
295
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
296
      .def("_set_dims",
Q
qijun 已提交
297
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
298
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
299
           })
Y
yuyang18 已提交
300
      .def("_set_layout",
D
dzhwinter 已提交
301 302 303
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
304
      .def("_alloc_float",
D
dzhwinter 已提交
305
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
306
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
307
           })
Y
yuyang18 已提交
308
      .def("_alloc_float",
Y
Yu Yang 已提交
309
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
310
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
311
           })
Y
yuyang18 已提交
312
      .def("_alloc_int",
Y
Yu Yang 已提交
313
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
314
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
315
           })
Y
yuyang18 已提交
316
      .def("_alloc_int",
D
dzhwinter 已提交
317
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
318
             self.mutable_data<int>(place);
Q
qijun 已提交
319
           })
Y
yuyang18 已提交
320
      .def("_alloc_int",
C
chengduoZH 已提交
321 322 323
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
324
      .def("_alloc_float",
C
chengduoZH 已提交
325 326 327
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
328 329
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
330
      .def("set", PyCPUTensorSetFromArray<double>)
331
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
332
      .def("set", PyCPUTensorSetFromArray<bool>)
333
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
334
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
335
      .def("set", PyCPUTensorSetFromArray<int8_t>)
336
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
337 338
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
339
      .def("set", PyCUDATensorSetFromArray<double>)
340
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
341
      .def("set", PyCUDATensorSetFromArray<bool>)
342
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
343
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
344
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
345 346 347 348 349 350
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
351
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
352
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
353
#endif
354
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
355 356 357 358
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
359
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
360 361
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
362

X
Xin Pan 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
376
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
377
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
378
     columns, hence [5, 2].
X
Xin Pan 已提交
379 380 381

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
382 383
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
407 408
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
409 410 411 412 413 414 415 416 417 418 419 420 421 422
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
423
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
424 425 426 427 428
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
429
      .def("set_lod",
430
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
431
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
432
             LoD new_lod;
433 434
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
435 436
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
437
             self.set_lod(new_lod);
S
sneaxiy 已提交
438 439 440 441 442 443 444
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
460 461 462 463
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
464
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
465 466
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
467 468

           Args:
469
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
470
           )DOC")
471 472 473 474 475 476 477 478
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
479 480 481 482 483 484 485
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
486
      // Set above comments of set_lod.
487 488 489 490 491 492 493 494
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
495 496 497 498 499
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
500
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
501 502 503 504 505 506 507 508 509 510 511 512
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
W
wopeizl 已提交
513 514 515 516 517 518 519
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
520
           )DOC");
D
dangqingqing 已提交
521

Q
qijun 已提交
522 523 524 525 526 527 528 529 530 531 532
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
533 534
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
535 536
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
537 538 539 540 541 542 543 544 545
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
546
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
547
      .def("rows", [](SelectedRows &self) {
548 549 550 551 552
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
553
      });
Q
qijun 已提交
554

555
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
556 557 558

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
559
      .def(py::init<>())
560
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
561
      .def("set_int",
562 563
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
564 565 566 567 568 569 570
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
571
      .def("get_tensor",
572 573
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
574 575
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
576 577 578
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
579 580 581 582 583
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
584 585 586
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
587
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
588 589 590 591 592
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
593
#endif
Y
Refine  
Yu Yang 已提交
594 595 596 597 598
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
599
           py::return_value_policy::reference);
600

S
sneaxiy 已提交
601
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
602

S
sneaxiy 已提交
603 604 605 606
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
607

S
sneaxiy 已提交
608 609
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
610
      .def("push",
S
sneaxiy 已提交
611
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
612
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
613
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
614
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
615
           })
S
sneaxiy 已提交
616 617 618 619
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
620

S
sneaxiy 已提交
621
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
622 623
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
624
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
625 626 627 628
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
629
        py::return_value_policy::copy);
S
sneaxiy 已提交
630

S
sneaxiy 已提交
631
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
651 652
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
653
      .def("var",
654
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
655
             return self.Var(name);
Y
Yu Yang 已提交
656
           },
S
sneaxiy 已提交
657 658
           py::arg("name"),
           R"DOC(
659
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
660

661
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
662
           current scope, the variable would be created. Otherwise,
663
           return the existing variable.
S
sneaxiy 已提交
664 665

           Args:
666 667
               name (str): the variable name.

S
sneaxiy 已提交
668
           Returns:
669
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
670 671 672 673
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
674
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
675
           its parent scope. Return None if not found.
676

S
sneaxiy 已提交
677 678
           Args:
               name (str): the variable name.
679

S
sneaxiy 已提交
680
           Returns:
681
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
682
           )DOC",
683
           py::return_value_policy::reference)
684
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
685 686 687 688 689 690
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
691
           py::return_value_policy::reference)
S
sneaxiy 已提交
692 693 694
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
695 696
           )DOC")
      .def("_kids", &Scope::kids);
697

S
sneaxiy 已提交
698 699 700 701 702 703
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
704 705
        R"DOC(
        Create a new scope.
706

S
sneaxiy 已提交
707 708 709
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
710 711
        py::return_value_policy::reference);

Y
Yu Yang 已提交
712 713
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
714 715
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
716 717 718 719 720 721 722 723 724 725
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
726 727
    return ret_values;
  });
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
744
  m.def("prune", [](const ProgramDesc &origin,
745
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
746
    ProgramDesc prog_with_targets(origin);
747
    for (const auto &t : targets) {
748
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
749
    }
750
    proto::ProgramDesc pruned_desc;
751
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
752
    return new ProgramDesc(pruned_desc);
753
  });
754 755 756 757
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
758 759 760
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
761 762
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
763
  // clang-format off
Y
Yu Yang 已提交
764
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
765 766
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
767
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
768 769 770
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
771
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
772
                      -> paddle::platform::DeviceContext* {
773
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
774
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
775
#else
Q
qijun 已提交
776
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
777
#endif
C
chengduoZH 已提交
778 779 780 781 782 783 784 785 786 787 788
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
789
// clang-format on
P
peizhilin 已提交
790
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
791 792
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
793 794 795 796 797
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
798 799 800 801 802 803 804 805 806 807 808 809
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
810
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
S
sneaxiy 已提交
811 812 813 814 815
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
816
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
817

818 819 820 821
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
822
      .def(py::init<>())
S
sneaxiy 已提交
823
      .def("_type", &PlaceIndex<platform::CPUPlace>)
S
sneaxiy 已提交
824 825 826 827 828
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
829
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
830

831 832 833 834
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
835
      .def("__init__",
S
sneaxiy 已提交
836
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
837 838 839
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
840
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
841
           })
S
sneaxiy 已提交
842
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
S
sneaxiy 已提交
843 844 845 846 847 848 849
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
850 851
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
852 853
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
854
      .def("_type", &PlaceIndex<platform::Place>)
S
sneaxiy 已提交
855 856 857 858
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
859 860
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
861 862 863 864 865 866
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
867 868 869 870
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
871 872
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
873 874 875 876 877
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
878
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
879
             self = gpu_place;
C
chengduoZH 已提交
880 881
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
882 883
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
884
      });
Y
Yu Yang 已提交
885

Y
Yu Yang 已提交
886 887 888
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
889
                    proto::OpDesc desc;
Y
Yu Yang 已提交
890 891 892 893 894
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
895
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
896
                  })
897
      .def("run",
898
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
899 900 901
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
902
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
903 904 905 906 907
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
908 909 910 911 912 913 914
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
915 916
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
917
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
918
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
919 920 921 922
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
923

F
fengjiayi 已提交
924
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
925
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
926
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
927
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
928
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
929 930
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
931
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
932 933
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
934
      });
S
sneaxiy 已提交
935

D
dzhwinter 已提交
936
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
937
  m.def("init_glog", framework::InitGLOG);
938
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
939 940
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
941

942
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
943
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
944
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
945
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
946
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
947 948 949 950 951 952
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
953

954
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
955
  m.def("get_fetch_variable", framework::GetFetchVariable);
956
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
957

X
Xin Pan 已提交
958 959
  m.def("_is_program_version_supported", IsProgramVersionSupported);

960 961 962 963 964
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
965

Y
Yu Yang 已提交
966 967 968 969 970 971 972 973 974
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
975
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
976 977
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
978 979 980 981 982 983 984 985 986 987
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
988 989 990 991 992 993 994
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
995

D
dzhwinter 已提交
996 997 998
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
999
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1000
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1001
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1002

P
peizhilin 已提交
1003
#ifndef _WIN32
D
dangqingqing 已提交
1004 1005 1006
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1007
#endif
P
peizhilin 已提交
1008
#endif
Y
Yu Yang 已提交
1009

1010 1011 1012 1013
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1014
      .value("kAll", platform::ProfilerState::kAll)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1028
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1029
  m.def("reset_profiler", platform::ResetProfiler);
1030
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1031 1032 1033
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1034

1035 1036
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1037
      .def("has", &ir::Pass::Has)
1038 1039 1040
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1041
           })
1042
      .def(
1043
          "set",
1044 1045 1046
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1047 1048
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1049 1050
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1051
        self.Apply(graph.get());
F
flame 已提交
1052
      });
1053

X
fix  
Xin Pan 已提交
1054 1055
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1070
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1071

Y
yuyang18 已提交
1072
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1073 1074 1075 1076
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1088 1089 1090

        )DOC");

Y
yuyang18 已提交
1091
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1092 1093 1094 1095 1096
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1107
      .def_property(
1108 1109 1110 1111
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1112 1113 1114 1115
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1116 1117 1118 1119 1120
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1121 1122 1123 1124
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1125 1126 1127 1128 1129 1130 1131
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1143
              )DOC")
Q
Qiao Longfei 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1155 1156 1157 1158 1159
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1160

Y
yuyang18 已提交
1161
  exec_strategy.def_property(
Y
yuyang18 已提交
1162 1163 1164 1165 1166 1167 1168
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1169 1170
      });

C
chengduo 已提交
1171 1172 1173 1174
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1186
)DOC");
Y
yuyang18 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1203
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1204
            self.reduce_ = strategy;
C
chengduo 已提交
1205 1206 1207 1208 1209 1210 1211
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1212 1213 1214 1215 1216
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1217
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1218
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1219 1220 1221 1222 1223 1224
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1225 1226 1227 1228
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1229
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1230
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1231 1232 1233 1234
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1235 1236 1237 1238 1239 1240
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1241
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1251
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1252 1253
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1254
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1255 1256 1257 1258 1259 1260
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1273 1274 1275 1276 1277 1278
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1279
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1280 1281 1282 1283 1284
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
C
chengduo 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1323 1324 1325 1326
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1327 1328 1329 1330
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1331 1332 1333
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1334 1335 1336 1337
      .def_property(
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1338 1339 1340 1341
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1342
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1343
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1344 1345 1346 1347 1348
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1349 1350

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1351
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1352
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
Q
Qiao Longfei 已提交
1353
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1354 1355 1356 1357
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1358 1359 1360 1361 1362
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1363 1364 1365 1366
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1367 1368 1369 1370 1371 1372
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1373

1374
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1375
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1376
  BindFleetWrapper(&m);
F
flame 已提交
1377 1378
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1379
  BindInferenceApi(&m);
1380
  BindDataset(&m);
L
Luo Tao 已提交
1381
}
1382
}  // namespace pybind
1383
}  // namespace paddle