transpose_op.cc 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <memory>
17
#include <string>
18
#include <vector>
X
xzl 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
24 25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
34 35 36 37
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
38
    size_t x_rank = x_dims.size();
X
xzl 已提交
39
    size_t axis_size = axis.size();
X
xzl 已提交
40

X
xzl 已提交
41
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
42 43 44 45
                      "ShapeError: The input tensor's dimension "
                      "should be equal to the axis's size. "
                      "But received input tensor's dimension is %d, "
                      "axis's size is %d",
X
xzl 已提交
46
                      x_rank, axis_size);
47 48 49 50 51

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
52 53 54 55 56 57 58
          "ValueError: Each element of Attribute axis should "
          "be a unique value range from 0 to (dims - 1), "
          "where the dims is the axis's size, "
          "unique value means this axis value can appear only once. "
          "But received axis[%d] is %d, axis_size is %d, "
          "count[axis[%d]] is %d",
          i, axis[i], axis_size, i, count[axis[i]]);
X
xzl 已提交
59
    }
X
xzl 已提交
60

X
xzl 已提交
61
    framework::DDim out_dims(x_dims);
62
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
63
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
64
    }
Q
Qiao Longfei 已提交
65
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
66
  }
67 68 69 70 71 72 73

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
74 75
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
76 77 78 79 80
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
81 82 83 84 85 86
      using framework::proto::VarType;
      auto input_data_type = ctx.Input<Tensor>("X")->type();
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
87 88
    }
#endif
89 90
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
91
        layout_, library_, customized_type_value);
92
  }
X
xzl 已提交
93 94 95 96
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
97
  void Make() override {
98
    AddInput(
X
xzl 已提交
99
        "X",
100 101
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
102 103
    AddAttr<std::vector<int>>(
        "axis",
104 105 106
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
107 108 109 110 111 112 113 114 115 116
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
117 118 119 120 121 122 123
    /* int8 parameters */
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
X
xzl 已提交
124
    AddComment(R"DOC(
125 126
Transpose Operator.

127 128
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
129

130 131 132 133 134 135
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
136

137
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
138

139
    then the output $Y$ is:
W
wanghaoshuang 已提交
140

141 142 143 144 145 146
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
147

148
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
149
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
150

X
xzl 已提交
151 152 153 154 155 156 157 158
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

159
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
160 161 162 163 164 165 166 167
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
168
  }
169 170 171 172 173 174 175 176 177 178 179 180 181 182

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
183 184 185
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
186
  }
X
xzl 已提交
187 188
};

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) should not be null");
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
219 220
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
221 222
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
223 224 225 226 227 228
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
229 230 231 232 233 234
      using framework::proto::VarType;
      auto input_data_type = ctx.Input<Tensor>("X")->type();
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
235 236
    }
#endif
237 238
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
239
        layout_, library_, customized_type_value);
240 241 242 243 244 245 246 247 248 249 250
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
    AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate();
  }
};

H
hong 已提交
251 252
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
253
 public:
H
hong 已提交
254
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
255

H
hong 已提交
256 257
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
258
    grad_op->SetType("transpose2_grad");
H
hong 已提交
259 260 261 262 263
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  }
};

class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("XShape"), "Input(XShape) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
      auto x_shape_dim =
          framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
287 288 289 290 291 292 293 294 295 296
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
297 298 299
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
300 301 302
  }
};

X
xzl 已提交
303 304 305 306
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
307 308 309 310
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
311
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
312

Q
QI JUN 已提交
313
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
314 315
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
X
xzl 已提交
316 317
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
P
phlrain 已提交
318 319
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
320 321

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
322 323
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
324 325 326
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad);

REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
327
    transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
328 329
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
330
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
331 332
REGISTER_OP_CPU_KERNEL(
    transpose2_grad,
333 334
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
335 336
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);