beam_search_decode_op.h 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/beam_search_decode_op_def.h"
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
                          LoDTensor* id_tensor,
                          LoDTensor* score_tensor,
                          size_t beam_size,
                          int end_id)
      : beam_size_(beam_size),
        end_id_(end_id),
        step_ids_origin_(step_ids),
        step_scores_origin_(step_scores),
        id_tensor_(id_tensor),
        score_tensor_(score_tensor) {
    tensor_on_gpu_ = false;
    tensor_on_npu_ = false;
    // First make a copy of GPU data on CPU
    if (platform::is_gpu_place(step_ids_origin_[0].place()) ||
        platform::is_npu_place(step_ids_origin_[0].place())) {
      if (platform::is_gpu_place(step_ids_origin_[0].place())) {
        tensor_on_gpu_ = true;
      } else {
        tensor_on_npu_ = true;
      }
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_ids_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_id : step_ids_origin_) {
        framework::LoDTensor out;
        if (step_id.numel() > 0) {
          if (tensor_on_gpu_) {
            dev_ctx->Wait();
          }
          framework::TensorCopy(step_id, platform::CPUPlace(), *dev_ctx, &out);
          dev_ctx->Wait();
        }
Q
Qiao Longfei 已提交
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        out.set_lod(step_id.lod());
        step_ids_.push_back(out);
      }
    }
    if (platform::is_gpu_place(step_scores_origin_[0].place()) ||
        platform::is_npu_place(step_scores_origin_[0].place())) {
      if (platform::is_gpu_place(step_scores_origin_[0].place())) {
        tensor_on_gpu_ = true;
      } else {
        tensor_on_npu_ = true;
      }
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_scores_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_score : step_scores_origin_) {
        framework::LoDTensor out;
        if (step_score.numel() > 0) {
          if (tensor_on_gpu_) {
            dev_ctx->Wait();
          }
          framework::TensorCopy(
              step_score, platform::CPUPlace(), *dev_ctx, &out);
          dev_ctx->Wait();
        }
Q
Qiao Longfei 已提交
85

86 87 88 89 90
        out.set_lod(step_score.lod());
        step_scores_.push_back(out);
      }
    }
  }
Q
Qiao Longfei 已提交
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  template <typename T>
  void apply_mix() const {
    if (std::is_same<bool, T>::value) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "beam search decode op does not support bool!"));

    } else {
      BeamSearchDecoder<T> beam_search_decoder(beam_size_, end_id_);
      // Check if the tensor is on GPU or NPU. If so, use the CPU copy instead
      if (tensor_on_gpu_ || tensor_on_npu_) {
        beam_search_decoder.Backtrace(
            step_ids_, step_scores_, id_tensor_, score_tensor_);
      } else {
        beam_search_decoder.Backtrace(
            step_ids_origin_, step_scores_origin_, id_tensor_, score_tensor_);
      }
    }
  }
110

111 112
  bool tensor_on_gpu_;
  bool tensor_on_npu_;
113 114
  size_t beam_size_;
  int end_id_;
115 116 117 118 119 120 121 122 123
  // TODO(Superjomn) Here might result serious performance issue in the
  // concurrency
  // scenarios.
  const LoDTensorArray& step_ids_origin_;
  const LoDTensorArray& step_scores_origin_;
  LoDTensorArray step_ids_ = LoDTensorArray();
  LoDTensorArray step_scores_ = LoDTensorArray();
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
Q
Qiao Longfei 已提交
124 125
};

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
template <typename DeviceContext, typename T>
class BeamSearchDecodeOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const LoDTensorArray* ids = context.Input<LoDTensorArray>("Ids");
    const LoDTensorArray* scores = context.Input<LoDTensorArray>("Scores");
    const size_t step_num = ids->size();
    PADDLE_ENFORCE_GT(
        step_num,
        0UL,
        platform::errors::InvalidArgument(
            "beam search steps, which is the"
            "size of Input(Ids) LoDTensorArray. beam search steps should "
            "be larger than 0, but received %d. ",
            step_num));
    const size_t source_num = ids->at(0).lod().at(0).size() - 1;
    PADDLE_ENFORCE_GT(
        source_num,
        0UL,
        platform::errors::InvalidArgument(
            "source_num is the sequence number of the"
            "first decoding step, indicating by Input(Ids)[0].lod[0].size. "
            "The number of source_num should be larger than"
            "0, but received %d. ",
            source_num));

    for (size_t i = 0; i < step_num; ++i) {
      PADDLE_ENFORCE_EQ(
          ids->at(i).lod().size(),
          2UL,
          platform::errors::InvalidArgument(
              "For the i step in beam search steps,"
              "the size of Input(Ids)[i].lod() should larger than 2,"
              "but received %d. ",
              ids->at(i).lod().size()));
161 162
    }

163 164
    size_t beam_size = context.Attr<int>("beam_size");
    int end_id = context.Attr<int>("end_id");
Q
Qiao Longfei 已提交
165

166 167 168
    // prepare output
    LoDTensor* sentenceIds = context.Output<LoDTensor>("SentenceIds");
    LoDTensor* sentenceScores = context.Output<LoDTensor>("SentenceScores");
169

170 171 172
    BeamSearchDecodeFunctor bs(
        *ids, *scores, sentenceIds, sentenceScores, beam_size, end_id);
    bs.apply_mix<T>();
173
  }
174
};
175

Q
Qiao Longfei 已提交
176 177
}  // namespace operators
}  // namespace paddle