sum_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13 14
#include <algorithm>
#include <string>
15
#include <vector>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
28
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
29

Q
Qiao Longfei 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
32 33
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
34
            framework::proto::VarType::LOD_TENSOR_ARRAY) {
35 36
      return;  // skip runtime infershape when is tensor array;
    }
37

38
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
39
    size_t N = x_dims.size();
Q
qijun 已提交
40
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
41

42 43 44 45 46 47 48 49 50 51
    framework::DDim in_dim({0});
    for (auto& x_dim : x_dims) {
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
        PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape");
      }
Q
qijun 已提交
52
    }
Q
Qiao Longfei 已提交
53 54
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
55
  }
56 57

 protected:
58
  framework::OpKernelType GetExpectedKernelType(
59 60 61
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      int dtype = -1;
      for (auto& x_var : x_vars) {
        auto& lod_tensor = x_var->Get<framework::LoDTensor>();
        if (lod_tensor.numel() == 0) {
          continue;
        }
        if (dtype == -1) {
          dtype = framework::ToDataType(lod_tensor.type());
        } else {
          PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(lod_tensor.type()));
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
                        "Sum operator should have at least one tensor");

77
      return framework::OpKernelType(
78 79
          static_cast<framework::proto::VarType::Type>(dtype),
          ctx.device_context());
80
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
81 82 83 84 85 86 87 88 89 90
      for (auto& var : x_vars) {
        auto& value = var->Get<framework::SelectedRows>().value();
        if (value.IsInitialized()) {
          return framework::OpKernelType(framework::ToDataType(value.type()),
                                         ctx.device_context());
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
                                     ctx.device_context());
91
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
92 93 94 95 96 97 98
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
          if (each.numel() != 0) {
            return framework::OpKernelType(framework::ToDataType(each.type()),
                                           ctx.device_context());
          }
99 100
        }
      }
Y
Yang Yang(Tony) 已提交
101
      PADDLE_THROW("Cannot find the input data type by all input data");
102 103 104 105
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
106 107 108 109
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
110
  SumOpMaker(OpProto* proto, OpAttrChecker* op_checker)
111
      : OpProtoAndCheckerMaker(proto, op_checker) {
112 113 114
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
115
    AddComment(R"DOC(
116
Sum operator.
117

118 119
This operators sums the input tensors. All the inputs can carry the
LoD (Level of Details) information. However, the output only shares
120
the LoD information with the first input.
121
)DOC");
122 123 124
  }
};

Q
QI JUN 已提交
125 126
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
127 128
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
QI JUN 已提交
129
    auto& inputs = op_desc.Input("X");
130
    auto var_type = framework::proto::VarType::SELECTED_ROWS;
Q
QI JUN 已提交
131

Y
Yang Yang(Tony) 已提交
132 133
    for (auto& name : op_desc.Input("X")) {
      VLOG(10) << name << " "
Y
Yang Yu 已提交
134
               << block->FindRecursiveOrCreateVar(name).GetType();
Y
Yang Yang(Tony) 已提交
135 136
    }

Q
QI JUN 已提交
137 138
    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
Y
Yang Yu 已提交
139
          return block->FindRecursiveOrCreateVar(name).GetType() ==
140
                 framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
141
        });
142 143

    auto is_tensor_array = [block](const std::string& name) {
Y
Yang Yu 已提交
144
      return block->FindRecursiveOrCreateVar(name).GetType() ==
145
             framework::proto::VarType::LOD_TENSOR_ARRAY;
146 147 148 149 150 151 152 153
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
154 155 156 157
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
          os << "    " << each << " type is "
Y
Yang Yu 已提交
158
             << block->FindRecursiveOrCreateVar(each).GetType() << "\n";
Y
Yang Yang(Tony) 已提交
159 160 161 162
        }
        PADDLE_ENFORCE(all_inputs_are_tensor_array,
                       "Not all inputs are tensor array:\n%s", os.str());
      }
163
      var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
164
    } else if (any_input_is_lod_tensor) {
165
      var_type = framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
166 167 168
    }

    auto out_var_name = op_desc.Output("Out").front();
Y
Yang Yu 已提交
169
    auto& out_var = block->FindRecursiveOrCreateVar(out_var_name);
Y
Yang Yang(Tony) 已提交
170 171 172
    out_var.SetType(var_type);
    auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
    out_var.SetDataType(in_var.GetDataType());
Q
QI JUN 已提交
173 174 175
  }
};

176
class SumGradMaker : public framework::GradOpDescMakerBase {
177
 public:
178
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
179

Y
Yu Yang 已提交
180
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
181
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
182
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
183 184 185 186
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
187
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
188 189 190 191
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
192
                     return std::unique_ptr<framework::OpDesc>(grad_op);
193 194
                   });
    return grad_ops;
195 196 197 198 199 200 201
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
202

Q
QI JUN 已提交
203 204
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Q
QI JUN 已提交
205 206 207 208 209
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);