HierarchicalSigmoidLayer.cpp 4.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "HierarchicalSigmoidLayer.h"
17
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

namespace paddle {

REGISTER_LAYER(hsigmoid, HierarchicalSigmoidLayer);

bool HierarchicalSigmoidLayer::init(const LayerMap& layerMap,
                                    const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK(config_.has_num_classes()) << "num_classes must be specifed in config";
  numClasses_ = config_.num_classes();
  CHECK_GE(numClasses_, (size_t)2);
  codeLength_ = findLastSet(numClasses_ - 1);

  size_t height = numClasses_ - 1;

  /* initialize the weightList */
  // The last input layer is for label
  CHECK(!parameters_.back());
  for (size_t i = 0; i < inputLayers_.size() - 1; i++) {
    size_t width = inputLayers_[i]->getSize();
    // create a new weight
    CHECK_EQ(parameters_[i]->getSize(), width * height);
    Weight* w = new Weight(height, width, parameters_[i]);

    // append the new weight to the list
    weights_.emplace_back(w);
  }

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    CHECK_EQ(biasParameter_->getSize(), numClasses_ - 1);
    biases_.reset(new Weight(1, numClasses_ - 1, biasParameter_));
  }

  return true;
}

void HierarchicalSigmoidLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = getInputValue(0)->getHeight();
  int size = getSize();
  reserveOutput(batchSize, size);
  Matrix::resizeOrCreate(preOutput_.value, batchSize, codeLength_,
                         /* trans */ false, useGpu(deviceId_));
  Matrix::resizeOrCreate(preOutput_.grad, batchSize, codeLength_,
                         /* trans */ false, useGpu(deviceId_));

  IVectorPtr label = getInput(*getLabelLayer()).ids;

  preOutput_.value->zeroMem();

  /* add the bias-vector */
  if (biases_.get() != NULL) {
    preOutput_.value->addByBitCode(numClasses_, *label, *biases_->getW());
  }
  for (size_t i = 0; i < inputLayers_.size() - 1; ++i) {
    MatrixPtr input = getInputValue(i);
    preOutput_.value->mulByBitCode(numClasses_, *label, *weights_[i]->getW(),
                                   *input);
  }
  // keep consistent with the clipping in the following softrelu
  preOutput_.value->clip(-40.0, 40.0);
  preOutput_.value->sumByBitCode(numClasses_, *label, *output_.value,
                                 -1);  // scaleSum
  preOutput_.value->softrelu(*preOutput_.value);
  MatrixPtr sum = Matrix::create(batchSize,
    1, /* trans= */ false, useGpu(deviceId_));
  preOutput_.value->rowSum(*sum);
  output_.value->add(*sum);
}

void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
  IVectorPtr label = getInput(*getLabelLayer()).ids;
  preOutput_.grad->one();
  preOutput_.grad->softreluDerivative(*preOutput_.value);
  preOutput_.grad->subByBitCode(numClasses_, *label);

  if (biases_ && biases_->getWGrad()) {
    preOutput_.grad->addByBitCodeBackward(numClasses_, *label,
                                          *biases_->getWGrad());

    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i < inputLayers_.size() - 1; ++i) {
    /* Calculate the W-gradient for the current layer */
    MatrixPtr input = getInputValue(i);
    if (weights_[i]->getWGrad()) {
      preOutput_.grad->mulByBitCodeBackwardWeight(
          numClasses_, *label, *weights_[i]->getWGrad(), *input);

      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }

    /* Calculate the input layers error */
    MatrixPtr inputGrad = getInputGrad(i);
    if (inputGrad) {
      preOutput_.grad->mulByBitCodeBackwardError(
          numClasses_, *label, *weights_[i]->getW(), *inputGrad);
    }
  }
}

}  // namespace paddle