avx_mathfun.h 22.8 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
/*
   AVX implementation of sin, cos, sincos, exp and log

   Based on "sse_mathfun.h", by Julien Pommier
   http://gruntthepeon.free.fr/ssemath/

   Copyright (C) 2012 Giovanni Garberoglio
   Interdisciplinary Laboratory for Computational Science (LISC)
   Fondazione Bruno Kessler and University of Trento
   via Sommarive, 18
   I-38123 Trento (Italy)

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  (this is the zlib license)
*/

#include <immintrin.h>

/* yes I know, the top of this file is quite ugly */
# define ALIGN32_BEG
# define ALIGN32_END __attribute__((aligned(32)))

/* __m128 is ugly to write */
typedef __m256  v8sf; // vector of 8 float (avx)
typedef __m256i v8si; // vector of 8 int   (avx)
typedef __m128i v4si; // vector of 8 int   (avx)

#define _PI32AVX_CONST(Name, Val)                                            \
  static const ALIGN32_BEG int _pi32avx_##Name[4] ALIGN32_END = { Val, Val, Val, Val }

_PI32AVX_CONST(1, 1);
_PI32AVX_CONST(inv1, ~1);
_PI32AVX_CONST(2, 2);
_PI32AVX_CONST(4, 4);


/* declare some AVX constants -- why can't I figure a better way to do that? */
#define _PS256_CONST(Name, Val)                                            \
  static const ALIGN32_BEG float _ps256_##Name[8] ALIGN32_END = { Val, Val, Val, Val, Val, Val, Val, Val }
#define _PI32_CONST256(Name, Val)                                            \
  static const ALIGN32_BEG int _pi32_256_##Name[8] ALIGN32_END = { Val, Val, Val, Val, Val, Val, Val, Val }
#define _PS256_CONST_TYPE(Name, Type, Val)                                 \
  static const ALIGN32_BEG Type _ps256_##Name[8] ALIGN32_END = { Val, Val, Val, Val, Val, Val, Val, Val }

_PS256_CONST(1  , 1.0f);
_PS256_CONST(0p5, 0.5f);
/* the smallest non denormalized float number */
_PS256_CONST_TYPE(min_norm_pos, int, 0x00800000);
_PS256_CONST_TYPE(mant_mask, int, 0x7f800000);
_PS256_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);

_PS256_CONST_TYPE(sign_mask, int, (int)0x80000000);
_PS256_CONST_TYPE(inv_sign_mask, int, ~0x80000000);

_PI32_CONST256(0, 0);
_PI32_CONST256(1, 1);
_PI32_CONST256(inv1, ~1);
_PI32_CONST256(2, 2);
_PI32_CONST256(4, 4);
_PI32_CONST256(0x7f, 0x7f);

_PS256_CONST(cephes_SQRTHF, 0.707106781186547524);
_PS256_CONST(cephes_log_p0, 7.0376836292E-2);
_PS256_CONST(cephes_log_p1, - 1.1514610310E-1);
_PS256_CONST(cephes_log_p2, 1.1676998740E-1);
_PS256_CONST(cephes_log_p3, - 1.2420140846E-1);
_PS256_CONST(cephes_log_p4, + 1.4249322787E-1);
_PS256_CONST(cephes_log_p5, - 1.6668057665E-1);
_PS256_CONST(cephes_log_p6, + 2.0000714765E-1);
_PS256_CONST(cephes_log_p7, - 2.4999993993E-1);
_PS256_CONST(cephes_log_p8, + 3.3333331174E-1);
_PS256_CONST(cephes_log_q1, -2.12194440e-4);
_PS256_CONST(cephes_log_q2, 0.693359375);

#ifndef __AVX2__

typedef union imm_xmm_union {
  v8si imm;
  v4si xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) {    \
    imm_xmm_union u __attribute__((aligned(32)));  \
    u.imm = imm_;				   \
    xmm0_ = u.xmm[0];                            \
    xmm1_ = u.xmm[1];                            \
}

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) {                       \
    imm_xmm_union u __attribute__((aligned(32))); \
    u.xmm[0]=xmm0_; u.xmm[1]=xmm1_; imm_ = u.imm; \
  }


#define AVX2_BITOP_USING_SSE2(fn) \
static inline v8si avx2_mm256_##fn(v8si x, int a) \
{ \
  /* use SSE2 instruction to perform the bitop AVX2 */ \
  v4si x1, x2; \
  v8si ret; \
  COPY_IMM_TO_XMM(x, x1, x2); \
  x1 = _mm_##fn(x1,a); \
  x2 = _mm_##fn(x2,a); \
  COPY_XMM_TO_IMM(x1, x2, ret); \
  return(ret); \
}

//#warning "Using SSE2 to perform AVX2 bitshift ops"
AVX2_BITOP_USING_SSE2(slli_epi32)
AVX2_BITOP_USING_SSE2(srli_epi32)

#define AVX2_INTOP_USING_SSE2(fn) \
static inline v8si avx2_mm256_##fn(v8si x, v8si y) \
{ \
  /* use SSE2 instructions to perform the AVX2 integer operation */ \
  v4si x1, x2; \
  v4si y1, y2; \
  v8si ret; \
  COPY_IMM_TO_XMM(x, x1, x2); \
  COPY_IMM_TO_XMM(y, y1, y2); \
  x1 = _mm_##fn(x1,y1); \
  x2 = _mm_##fn(x2,y2); \
  COPY_XMM_TO_IMM(x1, x2, ret); \
  return(ret); \
}

//#warning "Using SSE2 to perform AVX2 integer ops"
AVX2_INTOP_USING_SSE2(and_si128)
AVX2_INTOP_USING_SSE2(andnot_si128)
AVX2_INTOP_USING_SSE2(cmpeq_epi32)
AVX2_INTOP_USING_SSE2(sub_epi32)
AVX2_INTOP_USING_SSE2(add_epi32)
#define avx2_mm256_and_si256 avx2_mm256_and_si128
#define avx2_mm256_andnot_si256 avx2_mm256_andnot_si128
#else
#define avx2_mm256_slli_epi32 _mm256_slli_epi32
#define avx2_mm256_srli_epi32 _mm256_srli_epi32
#define avx2_mm256_and_si256 _mm256_and_si256
#define avx2_mm256_andnot_si256 _mm256_andnot_si256
#define avx2_mm256_cmpeq_epi32 _mm256_cmpeq_epi32
#define avx2_mm256_sub_epi32 _mm256_sub_epi32
#define avx2_mm256_add_epi32 _mm256_add_epi32
#endif /* __AVX2__ */


/* natural logarithm computed for 8 simultaneous float 
   return NaN for x <= 0
*/
v8sf log256_ps(v8sf x) {
  v8si imm0;
  v8sf one = *(v8sf*)_ps256_1;

  //v8sf invalid_mask = _mm256_cmple_ps(x, _mm256_setzero_ps());
  v8sf invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_LE_OS);

  x = _mm256_max_ps(x, *(v8sf*)_ps256_min_norm_pos);  /* cut off denormalized stuff */

  // can be done with AVX2
  imm0 = avx2_mm256_srli_epi32(_mm256_castps_si256(x), 23);

  /* keep only the fractional part */
  x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_mant_mask);
  x = _mm256_or_ps(x, *(v8sf*)_ps256_0p5);

  // this is again another AVX2 instruction
  imm0 = avx2_mm256_sub_epi32(imm0, *(v8si*)_pi32_256_0x7f);
  v8sf e = _mm256_cvtepi32_ps(imm0);

  e = _mm256_add_ps(e, one);

  /* part2: 
     if( x < SQRTHF ) {
       e -= 1;
       x = x + x - 1.0;
     } else { x = x - 1.0; }
  */
  //v8sf mask = _mm256_cmplt_ps(x, *(v8sf*)_ps256_cephes_SQRTHF);
  v8sf mask = _mm256_cmp_ps(x, *(v8sf*)_ps256_cephes_SQRTHF, _CMP_LT_OS);
  v8sf tmp = _mm256_and_ps(x, mask);
  x = _mm256_sub_ps(x, one);
  e = _mm256_sub_ps(e, _mm256_and_ps(one, mask));
  x = _mm256_add_ps(x, tmp);

  v8sf z = _mm256_mul_ps(x,x);

  v8sf y = *(v8sf*)_ps256_cephes_log_p0;
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p1);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p2);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p3);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p4);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p5);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p6);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p7);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p8);
  y = _mm256_mul_ps(y, x);

  y = _mm256_mul_ps(y, z);
  
  tmp = _mm256_mul_ps(e, *(v8sf*)_ps256_cephes_log_q1);
  y = _mm256_add_ps(y, tmp);


  tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
  y = _mm256_sub_ps(y, tmp);

  tmp = _mm256_mul_ps(e, *(v8sf*)_ps256_cephes_log_q2);
  x = _mm256_add_ps(x, y);
  x = _mm256_add_ps(x, tmp);
  x = _mm256_or_ps(x, invalid_mask); // negative arg will be NAN
  return x;
}

_PS256_CONST(exp_hi,	88.3762626647949f);
_PS256_CONST(exp_lo,	-88.3762626647949f);

_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);

_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

v8sf exp256_ps(v8sf x) {
  v8sf tmp = _mm256_setzero_ps(), fx;
  v8si imm0;
  v8sf one = *(v8sf*)_ps256_1;

  x = _mm256_min_ps(x, *(v8sf*)_ps256_exp_hi);
  x = _mm256_max_ps(x, *(v8sf*)_ps256_exp_lo);

  /* express exp(x) as exp(g + n*log(2)) */
  fx = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_LOG2EF);
  fx = _mm256_add_ps(fx, *(v8sf*)_ps256_0p5);

  /* how to perform a floorf with SSE: just below */
  //imm0 = _mm256_cvttps_epi32(fx);
  //tmp  = _mm256_cvtepi32_ps(imm0);
  
  tmp = _mm256_floor_ps(fx);

  /* if greater, substract 1 */
  //v8sf mask = _mm256_cmpgt_ps(tmp, fx);    
  v8sf mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);    
  mask = _mm256_and_ps(mask, one);
  fx = _mm256_sub_ps(tmp, mask);

  tmp = _mm256_mul_ps(fx, *(v8sf*)_ps256_cephes_exp_C1);
  v8sf z = _mm256_mul_ps(fx, *(v8sf*)_ps256_cephes_exp_C2);
  x = _mm256_sub_ps(x, tmp);
  x = _mm256_sub_ps(x, z);

  z = _mm256_mul_ps(x,x);
  
  v8sf y = *(v8sf*)_ps256_cephes_exp_p0;
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p1);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p2);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p3);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p4);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p5);
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, x);
  y = _mm256_add_ps(y, one);

  /* build 2^n */
  imm0 = _mm256_cvttps_epi32(fx);
  // another two AVX2 instructions
  imm0 = avx2_mm256_add_epi32(imm0, *(v8si*)_pi32_256_0x7f);
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  v8sf pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}

_PS256_CONST(minus_cephes_DP1, -0.78515625);
_PS256_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
_PS256_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
_PS256_CONST(sincof_p0, -1.9515295891E-4);
_PS256_CONST(sincof_p1,  8.3321608736E-3);
_PS256_CONST(sincof_p2, -1.6666654611E-1);
_PS256_CONST(coscof_p0,  2.443315711809948E-005);
_PS256_CONST(coscof_p1, -1.388731625493765E-003);
_PS256_CONST(coscof_p2,  4.166664568298827E-002);
_PS256_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI


/* evaluation of 8 sines at onces using AVX intrisics

   The code is the exact rewriting of the cephes sinf function.
   Precision is excellent as long as x < 8192 (I did not bother to
   take into account the special handling they have for greater values
   -- it does not return garbage for arguments over 8192, though, but
   the extra precision is missing).

   Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
   surprising but correct result.

*/
v8sf sin256_ps(v8sf x) { // any x
  v8sf xmm1, xmm2 = _mm256_setzero_ps(), xmm3, sign_bit, y;
  v8si imm0, imm2;

#ifndef __AVX2__
  v4si imm0_1, imm0_2;
  v4si imm2_1, imm2_2;
#endif

  sign_bit = x;
  /* take the absolute value */
  x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
  /* extract the sign bit (upper one) */
  sign_bit = _mm256_and_ps(sign_bit, *(v8sf*)_ps256_sign_mask);
  
  /* scale by 4/Pi */
  y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);

  /*
    Here we start a series of integer operations, which are in the
    realm of AVX2.
    If we don't have AVX, let's perform them using SSE2 directives
  */

#ifdef __AVX2__
  /* store the integer part of y in mm0 */
  imm2 = _mm256_cvttps_epi32(y);
  /* j=(j+1) & (~1) (see the cephes sources) */
  // another two AVX2 instruction
  imm2 = avx2_mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
  imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
  y = _mm256_cvtepi32_ps(imm2);

  /* get the swap sign flag */
  imm0 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_4);
  imm0 = avx2_mm256_slli_epi32(imm0, 29);
  /* get the polynom selection mask 
     there is one polynom for 0 <= x <= Pi/4
     and another one for Pi/4<x<=Pi/2

     Both branches will be computed.
  */
  imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
  imm2 = avx2_mm256_cmpeq_epi32(imm2,*(v8si*)_pi32_256_0);
#else
  /* we use SSE2 routines to perform the integer ops */
  COPY_IMM_TO_XMM(_mm256_cvttps_epi32(y),imm2_1,imm2_2);

  imm2_1 = _mm_add_epi32(imm2_1, *(v4si*)_pi32avx_1);
  imm2_2 = _mm_add_epi32(imm2_2, *(v4si*)_pi32avx_1);

  imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_inv1);
  imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_inv1);

  COPY_XMM_TO_IMM(imm2_1,imm2_2,imm2);
  y = _mm256_cvtepi32_ps(imm2);

  imm0_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_4);
  imm0_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_4);

  imm0_1 = _mm_slli_epi32(imm0_1, 29);
  imm0_2 = _mm_slli_epi32(imm0_2, 29);

  COPY_XMM_TO_IMM(imm0_1, imm0_2, imm0);

  imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_2);
  imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_2);

  imm2_1 = _mm_cmpeq_epi32(imm2_1, _mm_setzero_si128());
  imm2_2 = _mm_cmpeq_epi32(imm2_2, _mm_setzero_si128());

  COPY_XMM_TO_IMM(imm2_1, imm2_2, imm2);
#endif
 
  v8sf swap_sign_bit = _mm256_castsi256_ps(imm0);
  v8sf poly_mask = _mm256_castsi256_ps(imm2);
  sign_bit = _mm256_xor_ps(sign_bit, swap_sign_bit);

  /* The magic pass: "Extended precision modular arithmetic" 
     x = ((x - y * DP1) - y * DP2) - y * DP3; */
  xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
  xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
  xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
  xmm1 = _mm256_mul_ps(y, xmm1);
  xmm2 = _mm256_mul_ps(y, xmm2);
  xmm3 = _mm256_mul_ps(y, xmm3);
  x = _mm256_add_ps(x, xmm1);
  x = _mm256_add_ps(x, xmm2);
  x = _mm256_add_ps(x, xmm3);

  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
  y = *(v8sf*)_ps256_coscof_p0;
  v8sf z = _mm256_mul_ps(x,x);

  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
  y = _mm256_mul_ps(y, z);
  y = _mm256_mul_ps(y, z);
  v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
  y = _mm256_sub_ps(y, tmp);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
  
  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */

  v8sf y2 = *(v8sf*)_ps256_sincof_p0;
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_mul_ps(y2, x);
  y2 = _mm256_add_ps(y2, x);

  /* select the correct result from the two polynoms */  
  xmm3 = poly_mask;
  y2 = _mm256_and_ps(xmm3, y2); //, xmm3);
  y = _mm256_andnot_ps(xmm3, y);
  y = _mm256_add_ps(y,y2);
  /* update the sign */
  y = _mm256_xor_ps(y, sign_bit);

  return y;
}

/* almost the same as sin_ps */
v8sf cos256_ps(v8sf x) { // any x
  v8sf xmm1, xmm2 = _mm256_setzero_ps(), xmm3, y;
  v8si imm0, imm2;

#ifndef __AVX2__
  v4si imm0_1, imm0_2;
  v4si imm2_1, imm2_2;
#endif

  /* take the absolute value */
  x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
  
  /* scale by 4/Pi */
  y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);
  
#ifdef __AVX2__
  /* store the integer part of y in mm0 */
  imm2 = _mm256_cvttps_epi32(y);
  /* j=(j+1) & (~1) (see the cephes sources) */
  imm2 = avx2_mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
  imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
  y = _mm256_cvtepi32_ps(imm2);
  imm2 = avx2_mm256_sub_epi32(imm2, *(v8si*)_pi32_256_2);
  
  /* get the swap sign flag */
  imm0 = avx2_mm256_andnot_si256(imm2, *(v8si*)_pi32_256_4);
  imm0 = avx2_mm256_slli_epi32(imm0, 29);
  /* get the polynom selection mask */
  imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
  imm2 = avx2_mm256_cmpeq_epi32(imm2, *(v8si*)_pi32_256_0);
#else

  /* we use SSE2 routines to perform the integer ops */
  COPY_IMM_TO_XMM(_mm256_cvttps_epi32(y),imm2_1,imm2_2);

  imm2_1 = _mm_add_epi32(imm2_1, *(v4si*)_pi32avx_1);
  imm2_2 = _mm_add_epi32(imm2_2, *(v4si*)_pi32avx_1);

  imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_inv1);
  imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_inv1);

  COPY_XMM_TO_IMM(imm2_1,imm2_2,imm2);
  y = _mm256_cvtepi32_ps(imm2);

  imm2_1 = _mm_sub_epi32(imm2_1, *(v4si*)_pi32avx_2);
  imm2_2 = _mm_sub_epi32(imm2_2, *(v4si*)_pi32avx_2);

  imm0_1 = _mm_andnot_si128(imm2_1, *(v4si*)_pi32avx_4);
  imm0_2 = _mm_andnot_si128(imm2_2, *(v4si*)_pi32avx_4);

  imm0_1 = _mm_slli_epi32(imm0_1, 29);
  imm0_2 = _mm_slli_epi32(imm0_2, 29);

  COPY_XMM_TO_IMM(imm0_1, imm0_2, imm0);

  imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_2);
  imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_2);

  imm2_1 = _mm_cmpeq_epi32(imm2_1, _mm_setzero_si128());
  imm2_2 = _mm_cmpeq_epi32(imm2_2, _mm_setzero_si128());

  COPY_XMM_TO_IMM(imm2_1, imm2_2, imm2);
#endif

  v8sf sign_bit = _mm256_castsi256_ps(imm0);
  v8sf poly_mask = _mm256_castsi256_ps(imm2);

  /* The magic pass: "Extended precision modular arithmetic" 
     x = ((x - y * DP1) - y * DP2) - y * DP3; */
  xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
  xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
  xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
  xmm1 = _mm256_mul_ps(y, xmm1);
  xmm2 = _mm256_mul_ps(y, xmm2);
  xmm3 = _mm256_mul_ps(y, xmm3);
  x = _mm256_add_ps(x, xmm1);
  x = _mm256_add_ps(x, xmm2);
  x = _mm256_add_ps(x, xmm3);
  
  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
  y = *(v8sf*)_ps256_coscof_p0;
  v8sf z = _mm256_mul_ps(x,x);

  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
  y = _mm256_mul_ps(y, z);
  y = _mm256_mul_ps(y, z);
  v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
  y = _mm256_sub_ps(y, tmp);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
  
  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */

  v8sf y2 = *(v8sf*)_ps256_sincof_p0;
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_mul_ps(y2, x);
  y2 = _mm256_add_ps(y2, x);

  /* select the correct result from the two polynoms */  
  xmm3 = poly_mask;
  y2 = _mm256_and_ps(xmm3, y2); //, xmm3);
  y = _mm256_andnot_ps(xmm3, y);
  y = _mm256_add_ps(y,y2);
  /* update the sign */
  y = _mm256_xor_ps(y, sign_bit);

  return y;
}

/* since sin256_ps and cos256_ps are almost identical, sincos256_ps could replace both of them..
   it is almost as fast, and gives you a free cosine with your sine */
void sincos256_ps(v8sf x, v8sf *s, v8sf *c) {

  v8sf xmm1, xmm2, xmm3 = _mm256_setzero_ps(), sign_bit_sin, y;
  v8si imm0, imm2, imm4;

#ifndef __AVX2__
  v4si imm0_1, imm0_2;
  v4si imm2_1, imm2_2;
  v4si imm4_1, imm4_2;
#endif

  sign_bit_sin = x;
  /* take the absolute value */
  x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
  /* extract the sign bit (upper one) */
  sign_bit_sin = _mm256_and_ps(sign_bit_sin, *(v8sf*)_ps256_sign_mask);
  
  /* scale by 4/Pi */
  y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);

#ifdef __AVX2__    
  /* store the integer part of y in imm2 */
  imm2 = _mm256_cvttps_epi32(y);

  /* j=(j+1) & (~1) (see the cephes sources) */
  imm2 = avx2_mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
  imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);

  y = _mm256_cvtepi32_ps(imm2);
  imm4 = imm2;

  /* get the swap sign flag for the sine */
  imm0 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_4);
  imm0 = avx2_mm256_slli_epi32(imm0, 29);
  //v8sf swap_sign_bit_sin = _mm256_castsi256_ps(imm0);

  /* get the polynom selection mask for the sine*/
  imm2 = avx2_mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
  imm2 = avx2_mm256_cmpeq_epi32(imm2, *(v8si*)_pi32_256_0);
  //v8sf poly_mask = _mm256_castsi256_ps(imm2);
#else
  /* we use SSE2 routines to perform the integer ops */
  COPY_IMM_TO_XMM(_mm256_cvttps_epi32(y),imm2_1,imm2_2);

  imm2_1 = _mm_add_epi32(imm2_1, *(v4si*)_pi32avx_1);
  imm2_2 = _mm_add_epi32(imm2_2, *(v4si*)_pi32avx_1);
  
  imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_inv1);
  imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_inv1);

  COPY_XMM_TO_IMM(imm2_1,imm2_2,imm2);
  y = _mm256_cvtepi32_ps(imm2);

  imm4_1 = imm2_1;
  imm4_2 = imm2_2;

  imm0_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_4);
  imm0_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_4);
  
  imm0_1 = _mm_slli_epi32(imm0_1, 29);
  imm0_2 = _mm_slli_epi32(imm0_2, 29);

  COPY_XMM_TO_IMM(imm0_1, imm0_2, imm0);

  imm2_1 = _mm_and_si128(imm2_1, *(v4si*)_pi32avx_2);
  imm2_2 = _mm_and_si128(imm2_2, *(v4si*)_pi32avx_2);

  imm2_1 = _mm_cmpeq_epi32(imm2_1, _mm_setzero_si128());
  imm2_2 = _mm_cmpeq_epi32(imm2_2, _mm_setzero_si128());

  COPY_XMM_TO_IMM(imm2_1, imm2_2, imm2);
#endif
  v8sf swap_sign_bit_sin = _mm256_castsi256_ps(imm0);
  v8sf poly_mask = _mm256_castsi256_ps(imm2);

  /* The magic pass: "Extended precision modular arithmetic" 
     x = ((x - y * DP1) - y * DP2) - y * DP3; */
  xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
  xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
  xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
  xmm1 = _mm256_mul_ps(y, xmm1);
  xmm2 = _mm256_mul_ps(y, xmm2);
  xmm3 = _mm256_mul_ps(y, xmm3);
  x = _mm256_add_ps(x, xmm1);
  x = _mm256_add_ps(x, xmm2);
  x = _mm256_add_ps(x, xmm3);

#ifdef __AVX2__
  imm4 = avx2_mm256_sub_epi32(imm4, *(v8si*)_pi32_256_2);
  imm4 = avx2_mm256_andnot_si256(imm4, *(v8si*)_pi32_256_4);
  imm4 = avx2_mm256_slli_epi32(imm4, 29);
#else
  imm4_1 = _mm_sub_epi32(imm4_1, *(v4si*)_pi32avx_2);
  imm4_2 = _mm_sub_epi32(imm4_2, *(v4si*)_pi32avx_2);

  imm4_1 = _mm_andnot_si128(imm4_1, *(v4si*)_pi32avx_4);
  imm4_2 = _mm_andnot_si128(imm4_2, *(v4si*)_pi32avx_4);
  
  imm4_1 = _mm_slli_epi32(imm4_1, 29);
  imm4_2 = _mm_slli_epi32(imm4_2, 29);

  COPY_XMM_TO_IMM(imm4_1, imm4_2, imm4);
#endif

  v8sf sign_bit_cos = _mm256_castsi256_ps(imm4);

  sign_bit_sin = _mm256_xor_ps(sign_bit_sin, swap_sign_bit_sin);
  
  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
  v8sf z = _mm256_mul_ps(x,x);
  y = *(v8sf*)_ps256_coscof_p0;

  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
  y = _mm256_mul_ps(y, z);
  y = _mm256_mul_ps(y, z);
  v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
  y = _mm256_sub_ps(y, tmp);
  y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
  
  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */

  v8sf y2 = *(v8sf*)_ps256_sincof_p0;
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
  y2 = _mm256_mul_ps(y2, z);
  y2 = _mm256_mul_ps(y2, x);
  y2 = _mm256_add_ps(y2, x);

  /* select the correct result from the two polynoms */  
  xmm3 = poly_mask;
  v8sf ysin2 = _mm256_and_ps(xmm3, y2);
  v8sf ysin1 = _mm256_andnot_ps(xmm3, y);
  y2 = _mm256_sub_ps(y2,ysin2);
  y = _mm256_sub_ps(y, ysin1);

  xmm1 = _mm256_add_ps(ysin1,ysin2);
  xmm2 = _mm256_add_ps(y,y2);
 
  /* update the sign */
  *s = _mm256_xor_ps(xmm1, sign_bit_sin);
  *c = _mm256_xor_ps(xmm2, sign_bit_cos);
}