elementwise_op.h 4.6 KB
Newer Older
G
gongweibao 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26

#pragma once
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  using Tensor = framework::Tensor;
Q
Qiao Longfei 已提交
27 28 29 30 31 32 33 34 35 36
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of elementwise op should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of elementwise op should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
37 38
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
                      "Rank of first input must >= rank of second input.")
Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  }
};

class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ElementwiseOpMaker(framework::OpProto* proto,
                     framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", R"DOC(
The first input of elementwise op, it's a tensor of any dimensions.
)DOC");
    AddInput("Y", R"DOC(
The sencond input of elementwise op, it's a tensor and it's dimensions
must be small or equal to X's dimensions.
)DOC");
    AddAttr<int>("axis",
                 R"DOC(
Q
Qiao Longfei 已提交
58
When the shape(Y) does not equal the shape(X),Y will be broadcasted
G
gongweibao 已提交
59 60 61 62 63 64 65 66 67
to match the shape of X and axis should be dimension index Y in X
        )DOC")
        .SetDefault(-1)
        .EqualGreaterThan(-1);

    AddOutput("Out", "The output of elementwise op");
    comment_ = R"DOC(
Limited elementwise {name} operator.The equation is: Out = {equation}.
1. The shape of Y should be same with X or
Q
Qiao Longfei 已提交
68
2. Y's shape is a subset of X.
G
gongweibao 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
   Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.

   example:
      shape(X) = (2, 3, 4, 5), shape(Y) = (,)
      shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
      shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
      shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
      shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0

Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input X.
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string& src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string equation) {
    Replace(comment_, "{name}", name);
    Replace(comment_, "{equation}", equation);
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

 protected:
Q
Qiao Longfei 已提交
108 109 110 111 112 113 114 115 116
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
117 118 119 120

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Rank of first input must >= rank of second input.")

Q
Qiao Longfei 已提交
121 122 123 124
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
125
    }
Q
Qiao Longfei 已提交
126 127
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
128 129 130 131 132
    }
  }
};
}  // namespace operators
}  // namespace paddle